
The SpatDIF library – Concepts and Practical Applications in Audio Software

Jan C. Schacher

Zurich University of the Arts

Institute for Computer Music

and Sound Technology ICST

jan.schacher@zhdk.ch

Chikashi Miyama

University of Music, Cologne

Studio for Electronic Music

me@chikashi.net

Trond Lossius

Bergen Center for Electronic Arts BEK

trond.lossius@bek.no

ABSTRACT

The development of SpatDIF, the Spatial Sound Descrip-

tion Interchange Format, continues with the implementa-

tion of concrete software tools. In order to make SpatDIF

usable in audio workflows, two types of code implemen-

tations are developed. The first is the C/C++ software li-

brary ‘libspatdif’, whose purpose is to provide a reference

implementation of SpatDIF. The class structure of this li-

brary and its main components embodies the principles de-

rived from the concepts and specification of SpatDIF. The

second type of tool are specific implementations in audio

programming environments, which demonstrate the meth-

ods and best-use practices for working with SpatDIF. Two

practical scenarios demonstrates the use of an external in

MaxMSP and Pure Data as well as the implementation of

the same example in a C++ environment. A short-term

goal is the complete implementation of the existing spec-

ification within the library. A long-term perspective is to

develop additional extensions that will further increase the

utility of the SpatDIF format.

1 Introduction

The Spatial Sound Description Interchange Format (Spat-

DIF) presents a structured syntax for describing spatial au-

dio information, addressing the different tasks involved in

creating and performing spatial sound scenes. The goal of

this approach is to simplify and enhance the methods of

creating spatial sound content and to enable the exchange

of scene descriptions between otherwise incompatible soft-

ware. SpatDIF proposes a simple and extensible format

as well as best-practice examples for storing and trans-

mitting information about spatial sound scenes. It encour-

ages portability and the exchange of compositions between

venues with different surround audio infrastructures. Spat-

DIF also fosters collaboration between artists such as com-

posers, musicians, sound installation artists as well as re-

searchers in the fields of acoustics, musicology, and sound

engineering. SpatDIF was developed in a collaborative ef-

fort and has evolved over a number of years.

The completion of a first usable version of the specifi-

cation [9] defining the core descriptors and a few indis-

Copyright: c©2014 Jan C. Schacher et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

pensable additional descriptors was achieved in 2012 and

is published in the Computer Music Journal [8]. The com-

munity pages as well as all the related information can be

found at: http://www.spatdif.org. 1

The SpatDIF specification was informally presented to

the spatial sound community at the ICMC in Huddersfield

in August 2011 and at a workshop at the TU-Berlin in

September 2011. The responses in these meetings sug-

gested the urgent need for a lightweight and easy to im-

plement spatial sound scene standard, which could con-

trast the complex MPEG-4 scene description specification

[12]. In addition, several functions necessary to make this

lightweight standard become functional, such as the capa-

bility of dealing with temporal interpolation of scene de-

scriptors as described, were introduced. For a complete

overview of the state-of-the art in audio spatialisation tools,

please refer to the 2013 article in Computer Music Journal

[8], which also functions as a sort of white paper for the

specifications 0.3 [9].

Since then, one mayor development in surround au-

dio workflows has been the introduction of the propri-

etary Dolby Atmos format, which mixes concepts such

as sound-beds and channel-based traditional panning with

object based real-time panning. Dolby Atmos author-

ing is achieved using ProTools and the Dolby Rendering

and Mastering Unit (RMU). RMU provides the rendering

engine for the mix stage, and integrates with Pro Tools

through the Dolby Atmos Panner plug-in over Ethernet for

metadata communication and monitoring. The metadata

is stored in the Pro Tools session as plug-in automation

[2]. Dolby Atmos was initially developed for cinema, and

more recently consumer appliances have been announced

as well.

Finally, one toolset deserves mention because it resem-

bles in many ways what the development process described

in this paper is aiming at. The SoundScape Renderer

by Geier et al. [4] and its XML-based storage format

ASDF [3] were developed in the opposite direction, going

from concrete software-implementations to format defini-

tions. This has as a consequence that some of the ASDF-

descriptors are implementation-driven, which makes it less

portable than SpatDIF aspires to be.

1.1 SpatDIF Basics

Since SpatDIF is a syntax rather than a programming inter-

face or file-format, it may be represented in any of the cur-

1 All URIs in this article were last accessed in April 2014.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 861 -

jan.schacher@zhdk.ch
me@chikashi.net
trond.lossius@bek.no
http://creativecommons.org/licenses/by/3.0/
http://www.spatdif.org

client application libspatdif
• load SpatDIF files

• route SpatDIF descriptor stream
• interpret SpatDIF descriptors

• maintain SpatDIF scene

• render audio scene

• save SpatDIF files

• provide scene information

 on API request

Figure 1: Tasks and Data flow between client application

and the SpatDIF library

rent or future structured mark-up languages or messaging

systems. It describes the aspects required for the storage

and transmission of scene descriptions. Because a com-

plete work typically contains aspects that are outside the

realm of spatial sound scenes, SpatDIF provides descrip-

tors to link these aspects to the spatial dimensions.

A central principle for SpatDIF is the separation of au-

thoring and rendering of spatial sound scenes or pieces.

These processes may use the same or different infrastruc-

ture. They may occur at separate times or at separate

places. They may be executed either simultaneously or

with a long time between the two, and the may finally com-

bine all of these factors in a specific way. The exact modal-

ity of these processes should not have to be determined at

the outset.

In addition, two principal use-cases can be distinguished.

The first scenario is focusing on storing spatial audio scene

descriptions for future playback. The second scenario

deals with streamed audio content and scene description

information in real-time and quasi real-time. For these ap-

plications SpatDIF formulates a concise semantic structure

that is capable of carrying all the information relevant for

preserving a sound scene, without being tied to a specific

implementation or technical method.

2 Library Concepts

After establishing a coherent specification with example

use-cases in textual form only, the next development step is

the implementation of software, which embodies the spec-

ified concepts and should serve as a reference for future

work.

In this article we present the development and implemen-

tation of software tools aimed at easy integration of Spat-

DIF into existing software and workflows. The concepts

and guidelines laid down in the SpatDIF specification are

implemented in a platform-independent software library

written in C/C++ [5]. The library is in charge of hold-

ing one or more spatial audio scenes and provides ways to

read and write elements to and from this scenes, either di-

rectly from native code or via OSC-formatted messages,

that may originate from within the application or arrive

from an external source via the network. By providing

a software library rather than a complete software appli-

cation, implementations in many different software envi-

ronments are facilitated, which is one of the goals of the

project.

In section 3.1 the application of the library will be demon-

strated in an external for MaxMSP 2 and PureData 3 as

well as in an application written entirely in C++ in Open-

Frameworks. 4

2.1 Library Tasks

In order to facilitate implementations in many different en-

vironments without making any assumptions about their

capabilities, the types of tasks given to the library are care-

fully selected. There is a deliberate division of labour be-

tween the library and the client application (see Fig. 1).

On the one hand, the library builds and maintains in mem-

ory the SpatDIF scene, either obtained from an already ex-

isting description stored in a file, or on-the-fly in real time

from elements received via OSC-formatted commands or

native code calls. It provides an application programming

interface (API) for accessing the scene that hides most of

the complexity of handling the scene data. Through this

interface all the information is queried or written.

The client application, on the other hand, is in charge of

connecting to the file-system, managing the networking in-

terfaces as well as running the audio-system. All time-

based operations are done in the client-application, since

they may be driven by audio-rate, a control-rate scheduler

or even an external sync source. The client application

deals with all audio-related processes, such as loading au-

dio files, playing them back, configuring the audio-system,

and rendering the audio to generate an immersive experi-

ence.

2.2 Library Class Structure

The class diagram of the SpatDIF software library (see

Fig. 2) illustrates the relationship between the scene and

its contents, as well as their hierarchical dependencies.

An instance of sdScene class represents a SpatDIF scene

and maintains instances of sdEntityCore. Core classes

cover the elements mandated by SpatDF while extension

classes introduce additional and optional descriptions.

The functionalities of sdEntityCore may thus be extended

by the descendants of sdEntityExtension. The activation

and deactivation of the extensions is managed globally

within a scene, therefore sdScene is responsible for

all extension handling. Each instance of sdEntityCore

maintains instances of sdEvent, which represent all the

events of the entity as they unfold within the scene over

time.

The most important classes are described in the following

section.

sdScene

An instance of sdScene maintains all data associated with

a SpatDIF scene. This class offers clients the addition,

deletion and modification of entities in the scene, the addi-

tion and modification of the meta data associated with the

scene, and finally the activation and deactivation of exten-

sions in the scene.

2 www.cycling74.com
3 puredata.info
4 www.openframeworks.cc

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 862 -

http://www.cycling74.com
http://puredata.info
http://www.openframeworks.cc

sdScene

sdLoader

sdSaver

sdInfo

sdEntity sdEvent

sdOSC
Converter

sdOSC
Message

sdOSC
Responder

sdReport

sdEventCore
sdEntity
Extension

sdEntityCore

sdEntityExtension
Media

sdEventExtension
Media

sdRedirector

sdEntityExtension
Interpolation

sdEntityExtension
Reverb

sdEventExtension
Interpolation

sdEventExtension
Reverb

Figure 2: Simplified class hierarchy of the SpatDIF software library. The top row shows the three main classes, below are

the derived subclasses coloured according to their parents. The interfacing and utility classes are located on the left and

future extensions on the right are marked in grey.

Once the client activates an extension in a scene, sdScene

automatically adds extended functionalities and allocates

extra memory to all existing and newly created instances of

sdEntityCore. Symmetrically, when deactivating an exten-

sion, sdScene removes all extended functionalities and pre-

viously allocated memory from all existing sdEntitieCores,

leading to the deletion of all data stored in the extensions.

sdEntity

This class defines entities in SpatDIF scenes as a pure ab-

stract class. It implements basic functionalities, such as

addition, deletion, and modification of events.

sdEvent

This is a pure abstract class holding events, storing the ab-

solute time of the event, a descriptor of the type of event,

and the actual data as a value.

sdEntityCore

An instance of sdEntityCore maintains all events belonging

to that entity and a vector storing instances of SpatDIF ex-

tensions. This class replies to queries from the client about

events. The client is able to query about multiple events

within a certain time frame and filter events by descriptors.

sdEventCore

Each instance of sdEventCore maintains one SpatDIF core

event, consisting of the time of the event, a SpatDIF core

descriptor, and associated value(s). Any event in the scene

that is tied to a core descriptor is stored in an sdEntityCore.

sdEntityExtension

This is a pure abstract class of extensions, and the descen-

dants of this class. e.g., sdEntityExtensionMedia, handle

the events with extended descriptors. If a client activates

an extension in a scene, each existing instance of sdEnti-

tyCore instantiates the designated subclass of sdEntityEx-

tension and registers it.

sdLoader/sdSaver

These two utility classes enable clients to create or store

an instance of sdScene to or from a XML string. In order

to maintain platform independence and to achieve maxi-

mum flexibility, the library does not handle files directly,

the client software is responsible for the file management.

At the time of this writing the functions use the exter-

nal library TinyXML-2 5 for parsing of markup formatted

strings.

3 Practical Implementations

The SpatDIF syntax is an implementation-independent

specification. However, the actual value of using it only

becomes evident in real applications. Although SpatDIF

was developed with a number of different scenarios in

mind, the use-case most closely associated with the au-

thors’ practices are electro-acoustic surround audio com-

positions for concerts and installations or real-time spatial-

isation in computer music performances. Therefore, the

first code implementations of the SpatDIF library are made

with tools for real-time audio software.

In order to explore the methods and actual handling of

the ‘libspatdif’ in a real situation, a dual testbed was im-

plemented as an external for both MaxMSP and Pure Data,

named ‘spatdif’. Apart from small differences in the two

environments the two implementations are identical. In ad-

dition, an example application with a limited feature-set

was written in openFrameworks, in order to establish and

test a workflow done entirely in the C++ language.

There are a number of concepts that need to be taken into

account when using the library, informing the design of the

implementations shown here. The library serves as a data-

storage for audio scenes that needs to be queried for its

information in specific ways. It does not provide a schedul-

ing mechanism of its own, rather, the client application is

responsible for executing all time-related functions. This

design choice is explicitly geared towards temporal flexi-

5 www.grinninglizard.com/tinyxml

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 863 -

http://www.grinninglizard.com/tinyxml

bility, e.g., slowing down or speeding up playback, jump-

ing and cueing, which are features that can only properly

be implemented by the client application.

There are two main interfaces for the library, the native

command and the OSC-command, as will be discussed in

section 3.3. The native commands call functions of the

library within C/C++ code whereas the OSC-commands

get handed to the library as messages conforming to the

OSC syntax. In addition there is a wrapper in develop-

ment for embedding the library a pure C library. This

wrapper reflects the API of the OSC interface, but adds a

few language-specific elements, such as hierarchical data-

structures. The library does not implement network socket

handling functionalities itself, this is the responsibility of

the client environment. In order to input and output in-

formation directly to and from the scene, the name-space

is described with hierarchical addresses that must conform

to the SpatDIF specification. In the implementation of the

external, the input of elements into the scene adhere to the

OSC-style with a slash delimited format, whereas for the

outputs from the external, the addresses are converted to

a space-delimited format in order to avoid the dependency

on an additional OSC-parser.

Additional commands that directly address functions of

the library have a different syntax, which is not part of the

SpatDIF specification, but instead are specific to the im-

plementation of the library. These /spatdifcmd messages

concern the querying of information from the library and

the setting and getting of variables necessary for the exe-

cuting the queries.

File operations are not functions of the library itself. The

external in MaxMSP and PureData implements the re-

quired file loading and saving methods, which are specific

to their own environment.

3.1 Example Scene

For the following examples we use the canonical piece

‘Turenas’ by John Chowning [1] (for a detailed discussion

of this piece in context, see also [8]). The beginning of

the SpatDIF scene, including only the ‘insect’ trajectory at

second 0:44, contains the following elements in an XML

file format:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<spatdif version="0.3">

<meta>

<info>

<annotation>turenas insect trajectory</annotation>

</info>

<extensions>media</extensions>

<ordering>time</ordering>

</meta>

<time>44.0</time>

<source>

<name>insect</name>

<position>0.0 8.0 0.0</position>

<media>

<type>file</type>

<location>/sound/insect.wav</location>

</media>

</source>

<time>44.078</time>

<source>

<name>insect</name>

<position>1.359056 7.757522 0.0</position>

</source>

The corresponding sound files have to be stored and

transported alongside the SpatDIF file. It is therefore im-

portant to think in terms of SpatDIF bundles or projects

rather than single files. We deliberately choose not to pro-

pose a container that combines sound files and scene de-

scriptors in a binary format, since human-readability with-

out additional software tools would be lost.

3.2 Playback

The first example deals with file-handling and the playback

of a SpatDIF scene in a multichannel loudspeaker setup.

Figure 3 shows a simple MaxMSP patch where a mono-

phonic audio file is spatialised to eight loudspeakers via

the ICST Ambipanning external [6]. This workflow makes

a few assumptions which are not limitations of ‘libspatdif’

as such, but reductions that help to clarify the concepts.

The program demonstrates the rendering of the ‘Turenas’

scene excerpt. The scene is stored on disk in a SpatDIF-

formatted XML-file together with the audio content as a

sound file. After reading the scene from disk, the meta

section can be parsed in order to obtain annotation infor-

mation, as shown in the lower right.

In a fully dynamic system, additional information is re-

quired to set up the rendering algorithm. For this pur-

pose queries are made to the library to gather information

about the number of entities present in the scene and the

names of the entities as well as the extensions that are

present. 6 This allows to determine the number of play-

back voices needed, so that hierarchical message routing

can be set up according to the names of entities. In the

example this step is omitted and only one playback voice

is implemented with a hard-coded message-routing set to

the entity-type of source and the entity-name called insect.

Subsequently, the messages are routed to obtain the po-

sition core-descriptor required for the spatialisation pro-

cess as well as the media extension with the location de-

scriptor necessary to load files for playback. The sound-

file player, visualisation, and spatialisation algorithms [11]

shown here represent the minimal case and would normally

be more fully implemented.

As mentioned earlier, the scheduling of events in time is

a task of the client application. In the present example this

functionality becomes necessary and therefore a method

for time-based playback is demonstrated. The spatdifcmds

necessary to run iteratively through the scene can be seen

in the right half of the example patch. The basic action is to

ask with getDeltaTimeToNextEvent for the delta times be-

tween subsequent events. Since a scene can contain sparse

data at no fixed intervals, it is crucial to have a dynamic

timing mechanism for playback. The command setQuery-

TimeToNextEvent sets the query-time variable to the next

event, then the library gets queried for all the events at

that point in time with getEventSetsFromAllEntities, and

finally the time to wait until the next event is retrieved

again. These commands form a loop that steps through the

scene, something which is visualised through the orange

connection going back to the ‘spatdif’ external. The tim-

6 For more specific information about the concept of extensions in
SpatDIF, please refer to [7, 8, 9].

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 864 -

Figure 3: Implementation of SpatDIF in a MaxMSP external (marked in yellow), demonstrating the playback of the

Lissajous trajectory from John Chowning’s ‘Turenas’.

ing is executed by a delay which waits for the appropriate

amount of time to the next event before re-triggering the

same sequence. These commands are global to the scene,

so that all events associated with any entity in the scene

are retrieved. If only events from selected entities are de-

sired, this can be achieved by filtering in the message rout-

ing system, or as will be shown below with more specific

commands to the library.

3.3 Recording

The example shown in Figure 4, records spatialisation in-

formation originating from real-time input via a physical

controller into a SpatDIF scene. Four joysticks are set up

to control the playback and spatialisation of four mono-

phonic point-source entities in a scene. As in the previous

case, this example is a simplification of a real application,

yet still represents a fully functional implementation. The

patch is divided into two processes that run in parallel, the

recording on the right side depending on the realtime pro-

cessing on the left.

In the left half of the Figure 4, the real-time process starts

from the controller-input and leads to sound spatialisation

and multichannel output. The controller-input at the top

feeds into a visualisation-tool before reaching directly the

spatialisation-module. Underneath, keyboard-commanded

start/stop switches and file-selection menus control four

sound file playback modules.

On the right hand side of Figure 4 are the parts necessary

to record the key-events into a SpatDIF-scene. The large

message-box in the right shows the initialisations neces-

sary to set up the scene.

In this example, each voice independently activates the

recording of position information in synchrony with its

file-playback. This mechanism is shown in the ‘p voice’

sub-window. Here, the setPosition ‘spatdif’ command is

formatted with the correct entity-name and combined with

the real-time position data arriving from the visualisation

tool. Further ‘spatdif’ commands to set media events are

/media/setType and /media/setLocation. These commands

are tied to specific entities, and therefore need to be format-

ted with the entity-name and combined with the file-type

and file-path of the media resources.

Once the media- and position-commands are formatted,

they are sent directly to the ‘spatdif’ external for storage

with a time-stamp obtained from the system. This time-

stamp is calculated as relative time since the beginning of

the recording and is represented in seconds.

The setWriteTime commands sets the writing ‘cursor’ in

the scene, which will apply to all messages that arrive until

a new value for the ‘writeTime’ variable is set. Group-

ing all incoming events in this way may be regarded as

a type of ‘frame-based’ time-stamping and is defined in

the SpatDIF-specification as a scene ordered according to

time.

A ‘track-based’ ordering of the events is also possible

with this method, as is demonstrated in this example. All

events belonging to each entity may be recorded separately,

and their time can be reset by setting the ‘writeTime’ vari-

able to zero when starting the recording of a new entity’s

events. This ‘overdubbing’ method works without prob-

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 865 -

Figure 4: MaxMSP implementation, demonstrating the recording of four manually generated trajectories obtained from

joysticks. The upper right shows the ‘voice’ section responsible for formatting the media and position inputs.

lems when different entities are concerned (entities here

are synonymous for voices or tracks). When overdub-

bing events of the same entity, however, is it only possi-

ble to directly overwrite events if the time-stamps corre-

spond exactly to the ones already stored, as could be the

case for example for points in time generated by an algo-

rithmic processes. In a real-time case this is difficult, if

not impossible, to guarantee, therefore it is advisable to

clear an entity’s entire content with a call to the commands

/removeEntity followed by /addEntity before re-recording

events.

In general, all interaction with ‘libspatdif’ occurs through

the spatdifcmds-syntax. In a future version, input of pure

SpatDIF-formatted OSC-messages will be implemented,

eliminating the need to reformat the information to the

spatdifcmd syntax.

3.4 C++ Implementation

The C++ example application implements the entire work-

flow for the playback of a SpatDIF scene. The application

is called a ‘renderer’ in analogy to visual tools, because it

renders audible, in a surround setup, the information con-

tained in a SpatDIF ‘bundle’.

The implementation has to solve all the tasks relating

to file-handling, handling OSC-streams, instantiating the

voices of the playback engine, panning, distance cues, and

handling other descriptors present in the SpatDIF specifi-

cation version 0.3 [9].

In order to provide a relevant example for the application

of the ‘libspatdif’, the scope of the application has been

limited deliberately. Again, the panning algorithm used

is the spatial windowing algorithms named ‘ambipanning’

[6] that is highly flexible, easy to implement, not tied to

a specific number of speakers and usable without modi-

fication both in two and three dimensional spatialisation

situations. The application provides a stand-alone imple-

mentation, with a basic 3D visualisation of the scene, and

the possibility to play the scene in a stereo speaker setup.

It allows to load a SpatDIF file with associated sound files

and play it through a few predefined multichannel speaker

layouts.

This application is implemented in OpenFrameworks,

which provides a powerful C++ toolset and has a thriving

and helpful community. It produces both a sonic and vi-

sual rendering of the scene. In analogy to the external for

MaxMSP and Pure Data, this implementation encapsulates

all the functionalities concerning calls to the library in its

own class or ‘addon’ named ‘ofxSpatDIF’. This ‘addon’

reflects the interface found in the external.

Since OpenFrameworks is not particularly oriented to-

wards audio, the classes provided for sound processing are

somewhat rudimentary. However, and that is its strength,

many extensions exist and it is simple to add new function-

alities and tie in external libraries. ‘libsndfile’ 7 is such an

external library. It provides a powerful audio file handling

toolset and is linked in as a dynamic library, as is stipulated

by its license.

7 http://www.mega-nerd.com/libsndfile

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 866 -

http://www.mega-nerd.com/libsndfile

Figure 5: OpenFrameworks implementation of SpatDIF, demonstrating again the playback of the ‘Insect’ trajectory from

‘Turenas’

The visual representation is a bare-bones wireframe

drawing of the scene in OpenGL as seen in Figure 5.

The sound playback is processed through the sound-stream

interface provided by the environment. The process is

straightforward, even if its implementation is a bit delicate.

The audio samples in OpenFrameworks are calculated in

blocks, as in most sound processing applications. After

retrieving samples from the sound files via ‘libsndfile’, the

panning and distance corrections that were calculated from

the current scene information for each speaker position are

applied to the sound signals before each block of samples

is output. The signal processing chain for this example is

deliberately kept simple, to provide a clearer view of the

implementation of such a process.

4 Conclusions and Outlook

In this article we show concrete implementations of Spat-

DIF in two types of software. The software library’s pur-

pose is to provide a reference implementation of the spec-

ification. It also to serves as a pre-built and tested tool

that facilitates the use of SpatDIF in many environments.

The external for MaxMSP and Pure Data represents the

first application of this idea, while the C++ implementa-

tion in OpenFrameworks provides an additional point of

reference.

Both the software library and the external and C++ ap-

plication are work-in-progress and will be developed and

enhanced further as the project progresses. It is important

to keep in mind that the examples presented in this arti-

cle only demonstrate limited use-cases, which need to be

worked out more fully for a real-life applications. By pro-

viding software components both on a low and an interme-

diated level, the intention is to make available an accessible

method for working with SpatDIF in audio and processing

environments, which should be flexible enough to handle

all layers of a spatial audio workflow [10]. A greater chal-

lenge in the future will be the application of these tools in

commercial hosts, in particular within DAWs that only ex-

pose a small part of their structure to external access, for

example by plug-ins.

A short-term goal of this project is to finish the im-

plementation of the existing specification version 0.3 [9]

within the library. One such implementation that is cur-

rently in the works is the ‘Interpolation’ extension, which

permits to query the scene at arbitrary points in time and

returns interpolated values from descriptors, where this

makes sense. In addition, the methods for purely OSC-

driven input and output have to be completed as well as

loading and saving of scenes in other markup languages

such as JSON. A long-term perspective is to develop ad-

ditional extensions that will further increase the utility of

the SpatDIF format. In addition, the introduction of new

entities and extensions should extend the palette of spatial

audio scene descriptors. For instance a ‘room’ entity type

would enable the description of room acoustics in a reverb

extension.

The next iteration of the specification will be shaped by

the experiences gathered while implementing SpatDIF

into the presented tools, and will be addressing mostly

technical issues that have become apparent. This will take

less effort to integrate into the library, external and ‘ad-

don’ thanks to the consistent and open design of the library.

The source code for ‘libspatdif’ is licensed under the

‘FreeBSD’ license 8 and can be obtained through:

git clone http://code.zhdk.ch/git/spatdiflib.git

The ‘spatdif’ external’s source code and the SpatDIFRen-

derer’s C++ implementation are under the ‘FreeBSD’

license and can be obtained through: git clone

http://code.zhdk.ch/git/spatdifrenderer.git

A preliminary version of the external and help file for Pure

Data and MaxMSP can be downloaded here: http://www.

icst.net/research/downloads/spatdif-external/

8 http://opensource.org/licenses/BSD-2-Clause

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 867 -

http://www.icst.net/research/downloads/spatdif-external/
http://www.icst.net/research/downloads/spatdif-external/
http://opensource.org/licenses/BSD-2-Clause

Acknowledgments

These software developments for the SpatDIF project are

funded by the Institute for Computer Music and Sound

Technology of the Zurich University of the Arts.

References

[1] J. Chowning. “Turenas: the realization of a dream”.

In: Proc. of the 17es Journées d’Informatique Musi-

cale. Saint-Etienne, France, 2011.

[2] Dolby. Dolby Atmos: Next-Generation Audio for

Cinema. white paper. Dolby Laboratories, Inc.,

2012.

[3] M. Geier and S. Spors. “ASDF: Audio Scene De-

scription Format.” In: Proceedings of the Interna-

tional Computer Music Conference. 2008.

[4] Matthias Geier and Sascha Spors. “Spatial Au-

dio with the SoundScape Renderer”. In: 27th

TONMEISTERTAGUNG – VDT INTERNATIONAL

CONVENTION. Nov. 2012.

[5] Chikashi Miyama, Jan C. Schacher, and Nils Peters.

“Spatdif Library – Implementing the Spatial Sound

Descriptor Interchange Format”. In: Journal of the

Japanese Society for Sonic Arts 5.3 (2013), pp. 1–5.

[6] Martin Neukom and Jan C. Schacher. “Ambisonics

equivalent panning”. In: Proc. of the International

Computer Music Conference. Belfast, UK, 2008,

pp. 592–595.

[7] Nils Peters, Trond Lossius, and Jan C. Schacher.

“SpatDIF: Principles, Specification, and Exam-

ples”. In: Proc. of the 9th Sound and Music Comput-

ing Conference. Copenhagen, DK, 2012, pp. 500–

505.

[8] Nils Peters, Trond Lossius, and Jan C. Schacher.

“The Spatial Sound Description Interchange For-

mat: Principles, Specification, and Examples”. In:

Computer Music Journal 37.1 (2013), pp. 11–22.

[9] Nils Peters, Jan C. Schacher, and Trond Los-

sius. “SpatDIF specification Version 0.3, draft ver-

sion”. http : / / redmine . spatdif . org /

projects/spatdif/files, last accessed Oct.

2012. 2010–2012.

[10] Nils Peters et al. “A stratified approach for sound

spatialization”. In: Proc. of the 6th Sound and Music

Computing Conference. Porto, PT, 2009, pp. 219–

224.

[11] Jan C. Schacher and Phillippe Kocher. “Ambison-

ics Spatialization Tools for Max/MSP”. In: Proc. of

the International Computer Music Conference. New

Orleans, USA, 2006, pp. 274–277.

[12] E.D. Scheirer, R. Vaananen, and J. Huopaniemi.

“AudioBIFS: Describing audio scenes with the

MPEG-4 multimedia standard”. In: IEEE Transac-

tions on Multimedia 1.3 (1999), pp. 237–250.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 868 -

http://redmine.spatdif.org/projects/spatdif/files
http://redmine.spatdif.org/projects/spatdif/files

