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ABSTRACT 

In this paper we focus on issues of harmonic representa-

tion and computational analysis. A new idiom-

independent representation is proposed of chord types 

that is appropriate for encoding tone simultaneities in any 

harmonic context (such as tonal, modal, jazz, octatonic, 

atonal). The General Chord Type (GCT) representation, 

allows the re-arrangement of the notes of a harmonic 

simultaneity such that abstract idiom-specific types of 

chords may be derived; this encoding is inspired by the 

standard roman numeral chord type labeling, but is more 

general and flexible. Given a consonance-dissonance 

classification of intervals (that reflects culturally-

dependent notions of consonance/dissonance), and a 

scale, the GCT algorithm finds the maximal subset of 

notes of a given note simultaneity that contains only con-

sonant intervals; this maximal subset forms the base upon 

which the chord type is built. The proposed representa-

tion is ideal for hierarchic harmonic systems such as the 

tonal system and its many variations, but adjusts to any 

other harmonic system such as post-tonal, atonal music, 

or traditional polyphonic systems. The GCT representa-

tion is applied to a small set of examples from diverse 

musical idioms, and its output is illustrated and analysed 

showing its potential, especially, for computational music 

analysis & music information retrieval. 

1. INTRODUCTION 

There exist different typologies for encoding note simul-

taneities that embody different levels of harmonic infor-

mation/abstraction and cover different harmonic idioms.  

For instance, for tonal musics, chord notations such as the 

following are commonly used: figured bass (pitch classes 

denoted above a bass note – no concept of ‘chord’), 

popular music guitar style notation or jazz notation (abso-

lute chord), roman numeral encoding (relative to a key)  

[1]. For atonal and other non-tonal systems, pc-set theo-

retic encodings [2] may be employed.   

A question arises: is it possible to devise a ‘universal’ 

chord representation that adapts to different harmonic 

idioms? Is it possible to determine a mechanism that, 

given some fundamental idiom features, such as pitch 

hierarchy and consonance/dissonance classification, can 

automatically encode pitch simultaneities in a pertinent 

manner for the idiom at hand? 

Before attempting to answer the above question one 

could ask: What might such a ‘universal’ encoding sys-

tem be useful for? Apart from music-theoretic interest 

and cognitive considerations/implications, a general 

chord encoding representation may allow developing 

generic harmonic systems that may be adaptable to di-

verse harmonic idioms, rather than designing ad hoc sys-

tems for individual harmonic spaces. This was the prima-

ry aim for devising the General Chord Type (GCT) repre-

sentation. In the case of the project C-------T (name con-

cealed for peer reviewing) [3], a creative melodic harmo-

nisation system is required that relies on conceptual 

blending between diverse harmonic spaces in order to 

generate novel harmonic constructions;  mapping be-

tween such different spaces is facilitated when the shared 

generic space is defined with clarity, its generic concepts 

are expressed in a general and idiom-independent man-

ner, and a common general representation is available. 

In recent years, many melodic harmonisation systems 

have been developed, some rule-based [4,5] or evolution-

ary approaches that utilize rule based fitness evaluation 

[6, 7] others relying on machine learning techniques like 

probabilistic approaches [8,9] and neural networks [10], 

grammars [11] or hybrid systems (e.g. [12]). Almost all 

of these systems model aspects of tonal harmony: from 

“standard” Bach–like chorale harmonisation [4,10] 

among many others) to tonal systems such as “classic” 

jazz or pop ([9,11] among others). These systems aim to 

produce harmonizations of melodies that reflect the style 

of the discussed idiom, which is pursued by utilising 

chords and chord annotations that are characteristic of the 

idiom. For instance, the chord representation for studies 

in the Bach chorales include usually standard Roman 

numeral symbols, while jazz approaches encompass addi-

tional information about extensions in the guitar style 

encoding. 

For tonal computational models, Harte’s representa-

tion [13] provides a systematic, context-independent syn-

tax for representing chord symbols which can easily be 

written and understood by musicians , and, at the same 

time, is simple and unambiguous to parse with computer 

programs. This chord representation is very useful for 

annotating manually tonal music - mostly genres such as 

pop, rock, jazz that use guitar-style notation. However, it 
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cannot be automatically extracted from chord reductions 

and is not designed to be used in non-tonal musics. 

In this paper, firstly, we present the main concepts 

behind the General Chord Type representation and give 

an overall description, then, we describe the GCT algo-

rithm that automatically computes chord types for each 

chord, then, we present examples form diverse music 

idioms that show the potential of the representation and 

give some examples of applying statistical learning on 

such a representation, and, finally, we will discuss prob-

lems and future improvements. 

2. REPRESENTING CHORDS 

Harmonic analysis focuses on describing the harmonic 

content of pitch collections/patterns within a given music 

context in terms of harmonic labels, classes, functions 

and so on.  Harmonic analysis is a rather complex musi-

cal task that involves not only finding roots and labelling 

chords within a key, but also segmentation (points of 

harmonic change), identification of non-chord notes, met-

ric information and more generally musical context [14]. 

In this paper, we focus on the core problem of labelling 

chords within a given pitch hierarchy (e.g. key); thus we 

assume that a full harmonic reduction is available as in-

put to the model (manually constructed harmonic reduc-

tions). 

Our intention is to create an analytic system that may 

label any pitch collection, based on a set of user-defined 

criteria rather than on standard tonal music theoretic 

models or fixed psychoacoustic properties of harmonic 

tones. We intend our representation to be able to cope 

with chords not only in the tonal system, but any harmon-

ic system (e.g. octatonic, whole-tone, atonal, traditional 

harmonic systems, etc.). 

Root-finding is a core harmonic problem addressed 

primarily following two approaches: the standard stack-

of-thirds approach and the virtual pitch approach. The 

first attempts to re-order chord notes such that they are 

separated by (major or minor) third intervals preserving 

the most compact ordering of the chord; these stacks of 

thirds can then be used to identify the possible root of a 

chord (see, for instance, recent advanced proposal by 

[15]). The second approach, is based on Terhard’s virtual 

pitch theory [16] and Parncutt’s psychoacoustic model of 

harmony [17]; it maintains that the root of a chord is the 

pitch most strongly implied by the combined harmonics 

of all its constituent notes (intervals derived from the first 

members of the harmonic series are considered as ‘root 

supporting intervals’). 

Both of these approaches rely on a fixed theory of 

consonance and a fixed set of intervals that are consid-

ered as building blocks of chords.  In the culture-sensitive 

stack-of-thirds approach, the smallest consonant intervals 

in tonal music, i.e. the major and minor thirds, are the 

basis of the system. In the second ‘universal’ psychoa-

coustic approach, the following intervals, in decreasing 

order of importance, are employed: unison, perfect fifth, 

major third, minor seventh, and major second. Both of 

these approaches are geared towards tonal harmony, each 

with its strengths and weaknesses (for instance, the se-

cond approach has an inherent difficulty with minor har-

monies). Neither of them can be readily extended to other 

idiosyncratic harmonic systems. 

Harmonic consonance/dissonance has two major 

components: Sensory-based dissonance (psychoacoustic 

component) and music-idiom-based dissonance (cultural 

component)[18]. Due to the music-idiom dependency 

component, it is not possible to have a fixed universal 

model of harmonic consonance/dissonance. A classifica-

tion of intervals into categories across the dissonance-

consonance continuum can be made only for a specific 

idiom. The most elementary classification is into two 

basic categories: consonant and dissonant. For instance, 

in the common-practice tonal system, unisons, octaves, 

perfect fifths/fourths (perfect consonances) and thirds and 

sixths (imperfect consonances) are considered to be con-

sonances, whereas the rest of the intervals (seconds, sev-

enths, tritone) are considered to be dissonances; in poly-

phonic singing from Epirus, major seconds and minor 

sevenths may additionally be considered ‘consonant’ as 

they appear in metrically strong positions and require no 

resolution; in atonal music, all intervals may be consid-

ered equally ‘consonant’. 

Let’s examine the case of tonal and atonal harmony; 

these are probably as different as two harmonic spaces 

may be. In the case of tonal and atonal harmony, some 

basic concepts are shared; however, actual systematic 

descriptions of chord-types and categories are drastically 

different (if not incompatible), rendering any attempt to 

‘align’ two input spaces challenging and possibly mis-

leading (Figure 1). On one hand, tonal harmony uses a 

limited set of basic chord types (major, minor, dimin-

ished, augmented) with extensions (7ths, 9ths etc.) that 

have roots positioned in relation to scale degrees and the 

tonic, reflecting the hierarchic nature of tonal harmony; 

on the other hand, atonal harmony employs a flat mathe-

matical formalism that encodes pitches as pitch-class sets 

leaving aside any notion of pitch hierarchy, tone centres 

or more abstract chord categories and functions. It seems 

as if it is two worlds apart having as the only meeting 

point the fact that tones sound together (physically sound-

ing together or sounding close to one another allowing 

implied harmony to emerge). 

 

Figure 1.  Is mapping between ‘opposing’ harmonic 

spaces possible? 

Pc-set theory of course, being a general mathematical 

formalism, can be applied to tonal music, but, then its 

descriptive potential is mutilated and most interesting 

tonal harmonic relations and functions are lost. For in-
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stance, the distinction between major and minor chords is 

lost if Forte’s prime form is used (037 for both - these 

two chord have identical interval content), or a dominant 

seventh chord is confused with half-diminished seventh 

(prime form 0258); even, if normal order is used, that is 

less general, for the dominant seventh (0368), the root of 

the chord is not the 0 on the left of this ordering (pc 8 is 

the root).  Pitch-class set theory is not adequate for tonal 

music. At the same time, the roman-numeral formalism is 

inadequate for atonal music as major/minor chords and 

tonal hierarchies are hardly relevant for atonal music. 

In trying to tackle issues of tonal hierarchy, we have 

devised a novel chord type representation, namely the 

General Chord Type (GCT) representation, that takes as 

its starting point the common-practice tonal chord repre-

sentation (for a tonal context, it is equivalent to the stand-

ard roman-numeral harmonic encoding), but is more gen-

eral as it can be applied to other non-standard tonal sys-

tems such as modal harmony and, even, atonal harmony.  

This representation draws on knowledge from the domain 

of psychoacoustics and music cognition, and, at the same 

time, ‘adjusts’ to any context of scales, tonal hierarchies 

and categories of consonance/dissonance. 

At the heart of the GCT representation is the idea that 

the ‘base’ of a note simultaneity should be consonant. 

The GCT algorithm tries to find a maximal subset that is 

consonant; the rest of the notes that create dissonant in-

tervals to one or notes of the chord ‘base’ form the chord 

‘extension’. The GCT representation has common char-

acteristics with the stack-of-thirds and the virtual pitch 

root finding methods for tonal music, but has differences 

as well (see section 4.3). Moreover, the user can define 

which intervals are considered ‘consonant’ giving thus 

rise to different encodings. As will be shown in the next 

sections, the GCT representation encapsulates naturally 

the structure of tonal chords and at the same time is very 

flexible and can readily be adapted to different harmonic 

systems.   

3. THE GENERAL CHORD TYPE REPRE-

SENTATION 

3.1 Description of the GCT Algorithm 

Given a classification of intervals into conso-

nant/dissonant (binary values) and an appropriate scale 

background (i.e. scale with tonic),  the GCT algorithm 

computes, for a given multi-tone simultaneity, the ‘opti-

mal’ ordering of pitches such that a maximal subset of 

consonant intervals appears at the ‘base’ of the ordering 

(left-hand side) in the most compact form. Since a tonal 

centre (key) is given, the position within the given scale 

is automatically calculated.  

Input to the algorithm is the following: 

• Consonance vector: The user defines which intervals 

are consonant/dissonant. A 12-point vector is 

employed where each vector entry corresponds to a 

pitch interval from 0 to 11 - in the current version of 

the algorithm, Boolean values are used (i.e., 

consonant=1, dissonant=0). For instance, the vector 

[1,0,0,1,1,1,0,1,1,1,0,0] means that the unison, minor 

and major third, perfect fourth and fifth, minor and 

major sixth intervals are consonant – dissonant 

intervals are the seconds, sevenths and the tritone; this 

specific vector is referred to in this text as the 

common-practice consonance vector. 

• Pitch Scale Hierarchy:  The pitch hierarchy (if any) is 

given in the form of scale tones and a tonic. For 

instance, a D maj scale is given as: 2, [0,2,4,5,7,9,11], 

or an A minor pentatonic scale as: 9, [0,3,5,7,10]. 

• Input chord:  list of MIDI pitch numbers (converted to 

pc-set). 

 

GCT Algorithm (core) - computational pseudocode  

Input: (i) the pitch scale (tonality), (ii) a vector of the 

intervals considered consonant, (iii) the pitch class set 

(pc-set) of a note simultaneity 

Output: The roots and types of the possible chords de-

scribing the simultaneity 

1. find all maximal subsets of pairwise consonant 

tones 

2. select maximal subsets of maximum length 

3. for all selected maximal subsets do 

4. order the pitch classes of each maximal subset in 

the most compact form (chord ‘base’) 

5. add the remaining pitch classes (chord ‘exten-

sions’) above the highest of the chosen maximal 

subset's (if necessary, add octave - pitches may 

exceed the octave range) 

6. the lowest tone of the chord is the ‘root’ 

7. transpose the tones of the chord so that the low-

est becomes 0 

8. find position of the ‘root’ in regards to the given 

tonal centre (pitch scale) 

9. endfor 

The GCT algorithm encodes most chord types ‘correctly’ 

in the standard tonal system. In example 1, Table 1 the 

note simultaneity [C,D,F#,A] or [0,2,6,9] in a G major 

key is interpreted as [7,[0,4,7,10]], i.e. as a dominant sev-

enth chord (see similar example in Section 3.3). 

However, the algorithm is undecided in some cases, 

and even makes ‘mistakes’ in other cases. In most in-

stances of multiple encodings, it is suggested that these 

ideally should be resolved by taking into account other 

harmonic factors (e.g., bass line, harmonic functions, 

tonal context, etc.). For instance, the algorithm gives two 

possible encodings for a [0,2,5,9] pc-set, namely minor 

seventh chord or major chord with sixth (see Table1, ex-

ample 2); such ambiguity may be resolved if tonal con-

text is taken into account. For the [0,3,4,7] pc-set with 

root 0, the algorithm produces two answers, namely, a 

major chord with extension [0,[0,4,7,15]] and a minor 

chord with extension [0,[0,3,7,16]]; this ambiguity may 

be resolved if key context is taken into account: for in-

stance, [0,4,7,15] would be selected in a C major or G 

major context and [0,3,7,16] in a C minor or F minor 

context. Symmetric chords, such as the augmented chord 

or the diminished seventh chord, are inherently ambigu-

ous; the algorithm suggests multiple encodings which can 

be resolved only by taking into account the broader har-

monic context (see Table1, example 3).  
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  Example 1 Example 2 Example 3 

Tonality - key 

Cons. Vector 

Input 

pc-set 

G: [7, [0, 2, 4, 5, 7, 9, 11]] 

[1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 

0] 

[60, 62, 66, 69, 74] 

[0, 2, 6, 9] 

C: [0, [0, 2, 4, 5, 7, 9, 11]] 

[1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0] 

[50, 60, 62, 65, 69] 

[0, 2, 5, 9] 

C: [0, [0, 2, 4, 5, 7, 9, 11]] 

[1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0] 

[62, 68, 77, 71] 

[2, 5, 8, 11] 

Maximal subsets 

Narrowest range 

Add extensions 

Lowest is root 

Chord in root position 

Relative to key 

[2, 6, 9] 

[2, 6, 9] 

[2, 6, 9, 12] 

2 (note D) 

[2, [0, 4, 7, 10]] 

[7, [0, 4, 7, 10]] 

[2, 5, 9] and [5, 9, 0] 

[2, 5, 9] and [5, 9, 0] 

[2, 5, 9, 12] and [5, 9, 0, 14] 

2 and 5 (notes D & F) 

[2, [0, 3, 7, 10]] & [5, [0, 4, 7, 9]] 

[2, [0, 3, 7, 10]] & [5, [0, 4, 7, 9]] 

[2, 5], [5, 8], [8, 11], [2, 11] 

[2, 5], [5, 8], [8, 11], [2, 11] 

all rotations of [2,5,8,11] 

2,5,8,11 (resp. for each rotation) 

[X,[0,3,6,9]], where X∈{2,5,8,11} 

[X,[0,3,6,9]], where X∈{2,5,8,11} 

Extra 

steps: 

Subset overap 

Base in scale 

 [2, [0, 3, 7, 10]] 

 

 

[11,[0,3,6,9]] 

Table 1. Examples of applying the GCT algorithm. 

 

Since the aim of this algorithm is not to perform sophisti-

cated harmonic analysis, but rather to find a practical and 

efficient encoding for tone simultaneities (to be used, for 

instance, in statistical learning and automatic harmonic 

generation – see end of Section 4), we decided to extend 

the algorithm so as to reach in every case a single chord 

type for each simultaneity (no ambiguity).   

 

GCT Algorithm (additional steps) - for unique encoding 

If more than one maximal subsets exist: 

• Overlapping of maximal subsets: create a sequence of 

maximal subsets by ordering them so as to have maxi-

mal overlapping between them and keep the maximal 

subset that appears first in the sequence (chord's base) 

• Chord base notes are scale notes: prefer maximal subset 

that contains only pcs that appear in the given scale (to-

nal context) – i.e. avoid non-scale notes in the chord 

base (this rule is rather arbitrary and is under considera-

tion) 

• if neither of the above give a unique solution, chose one 

encoding at random 

Additional adjustment: for dyads, in a tonal context, pre-

fer perfect fifth over perfect fourth, and prefer seventh to 

second intervals 

 

The additional steps select chord type [2, [0,3,7,10]] in 

example 2, Table1 (maximal overlapping between two 

maximal subsets), and [11, [0,3,6,9]] in example 3, Table 

1 (last pitch-class is Ab that is a non-scale degree in C 

major).  

3.2 Formal description of the Core GCT Algorithm 

The proposed algorithm for extracting the computation of 

GCT receives a simultaneity of pitches that are trans-

formed into pitch classes and produces a chord type rela-

tive to a key, namely the root, the base and the extension, 

which specify qualitative information about the chord 

that more precisely describes this simultaneity. A detailed 

description of the algorithm follows, based on an exam-

ple input simultaneity. Suppose that the input set of notes 

results in the pc-set [0, 2, 6, 9], which could be described 

as a D major chord with minor seventh regarding the to-

nal music environment – described by the υ = [1, 0, 0, 1, 

1, 1, 0, 1, 1, 1, 0, 0] consonance vector. Therefore, the 

algorithm should produce an output in the form: [r, [b], 

[e]] = [2, [0, 4, 7], [10]].  

By utilising the input pc-set and given a consonance 

vector that represents a selected music idiom (in this ex-

ample the consonance vector is υ = [1, 0, 0, 1, 1, 1, 0, 1, 

1, 1, 0, 0]), a binary matrix is constructed that is denoted 

as B. Each row and column of B represents a pitch class 

of the input chord, while a matrix entry is 1 or 0, signify-

ing whether the pair of row and column pcs are consonant 

or dissonant respectively – according to the current con-

sonance vector. Strictly, if the consonance vector is de-

noted as υ and the input pcset as p, then ∀ i, j ∈ {1, 2, . . ., 

length(p)} 

 
(1) 

where the function length(x) return the length of vector x. 

The B matrix in the discussed example, where p = [0, 2, 

6, 9], is the following: 

 

 

(2) 

Afterwards, a tree is constructed for each of the rows of 

B. The root node of these trees is the pitch class that cor-

responds to the respective row, while their branches from 

leaves to nodes include pitch classes that are pairwise 

consonant (according to υ). The construction of the tree 

that corresponds to the i–th element of p, is implemented 

by recursively traversing B in a depth–first–search (DFS) 

fashion, beginning from the i–th row and following the 

paths ‘circumscribed’ by the occurrences of units. Such a 

traversal is exhibited in Table 2 for the second row of the 

current example’s B matrix. This step’s outcome is a col-

lection of trees, each of which corresponds to a row of B. 

The trees of the current example are shown in Table 3. 
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Τable 2. The steps of the algorithm when scanning the path of the second row. 

 

Table 3. All the trees for the current example. The max-

imal path is highlighted with boldface typesetting. 

After the application of the above procedure, the paths 

from root to leaves with maximal length are kept either as 

the output chord candidates, or for further processing in 

the steps described in the remaining of this section. In the 

current example there is a single maximal path ([2, 6, 9]), 

which is highlighted with boldface typesetting (Table 3). 

After the longest path has been extracted, the pitch clas-

ses that constitute it, are recombined in their most com-

pact form, which in the current example is [2, 6, 9] (unal-

tered). The pitch class 0 of the initial [2, 6, 9] pc-set is 

considered as an extension. Thereby, the simultaneity [0, 

2, 6, 9] is circularly shifted to [2, 6, 9, 12], disregarding 

the fact that pitch classes can take integer values between 

0 and 11. In turn, [2, 6, 9, 12] is transformed to the fol-

lowing [r, [b], [e]] denotation: [2, [0, 4, 7], [10]]. This 

denotation clarifies that the simultaneity [0, 2, 6, 9] is 

actually a major chord (base [0, 4, 7]) with a minor sev-

enth (extension [10]) and fundamental pitch class 2, (i.e. 

D7). As the tonal context is given as input, for instance G 

major key, the absolute chord type [2, [0,4,7,10]] (i.e. D7 

chord) is converted to relative chord type, i.e., 

[7,[0,4,7,10]] which means dominant seventh in G major. 

This is equivalent to the roman numeral analytic types. 

3.3 An example analysis with GCT 

An example harmonic analysis of a Bach Chorale phrase 

illustrates the proposed GCT chord representation (Figure 

2). For a tonal context, chord types are optimised such 

that pcs at the left hand side of chords contain only con-

sonant intervals (i.e. 3
rds

  & 6
ths

, and Perfect 4
ths

 & 5
ths

). 

For instance, the major 7
th

 chord is written as [0,4,7,10] 

since set [0,4,7] contains only consonant intervals where-

as 10 that introduces dissonances is placed on the right-

hand side – this way the relationship between major 

chords and major seventh chords remains rather transpar-

ent and is easily detectable.  Within the given D major 

key context it is simple to determine the position of a 

chord type in respect to the tonic – e.g. [7,[0,4,7,10]] 

means a major seventh chord whose root is 7 semitones 

above the tonic, amounting to a dominant seventh. This 

way we have an encoding that is analogous to the stand-

ard roman numeral encoding (Figure 2, top row). If the 

tonal context is changed, and we have a chromatic scale 

context (arbitrary ‘tonic’ is 0, i.e. note C) and we consid-

er all intervals equally ‘consonant’, we get the second 

GCT analysis in Figure 1 which amounts to normal or-

ders (not prime forms) in a standard pc-set analysis  – for 

tonal music this pc-set analysis is weak as it misses out 

important tonal hierarchical relationships (notice that the 

relation of the dominant seventh chord type to the plain 

dominant chord is obscured). Note that relative ‘roots’ to 

the ‘tonic’ 0 are preserved as they can be used in harmon-

ic generation tasks. 

 

Figure 2 Chord analysis of a Bach Chorale phrase by 

means of traditional roman numeral analysis, pc-sets 

and two versions of the GCT algorithm. 

For practical reasons of space in the musical illustrations, 

the form [r,[b],[e]] is not preserved: the base and exten-

sion is concatenated and brackets are omitted. For in-

stance: [7,[0,4,7],[10]] may be depicted as 7,[0,4,7,10] or 

even as 7.04710. 

4. HARMONIC ENCODING & ANALYSIS 

WITH THE GCT 

The GCT algorithm has been applied to tonal extracts 

from standard tonal pieces, such as Bach Chorales, but 

additionally it has been tested out on harmonic structures 

from diverse harmonic idioms. Some examples are pre-

sented below to give an idea of the potential of the GCT 

representation. Strong points of the encoding are given 

along with weaknesses. Some aspects of the analysis are 

difficult to judge in some idioms and further study in 

required. 
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4.1 GCT Encoding Examples 

In common-practice tonal music, GCT works very 

well. Mistakes are sometimes made in case of symmetric 

chords such as the diminished seventh chord or the aug-

mented triad. In the case of the half diminished seventh 

chord GCT ‘prefers’ to label it as a minor chord with 

added sixth instead of a diminished chord with minor 

seventh. Chords that include chromatic notes such as the 

German sixth, Italian sixth, Neapolitan sixth are encoded 

consistently even though not necessarily coinciding with 

analytic interpretations by theorists (the French sixth is 

more tricky as it is a symmetric chord and GCT finds two 

equally prominent ‘roots’). 

Below, a number of examples are presented that illus-

trate the application of the GCT algorithm on diverse 

harmonic textures. The first example (Figure 3) is taken 

from the first measures of Beethoven’s Moonlight Sona-

ta. In this example, GCT encodes classical harmony in a 

straightforward manner. All instances of the tonic chord 

inverted or not (i.e., C# minor) are tagged as 0,[0,3,7] and 

[10] is added when the 7
th

 is present; the dominant sev-

enth is 7,[0,4,7,10] and it appears once without the fifth 

[7]; the fourth chord is a Neapolitan sixth and it is encod-

ed as 1,[0,4,7] which means major chord on lowered se-

cond degree (Db major chord in the C# minor key).  

 

Figure 3 Beethoven, Sonata 14, op.27-2 (reduction of 

first five measures). Top row: roman numeral harmonic 

analysis; bottom row: GCT analysis. GCT successfully 

encodes all chords, including the Neapolitan sixth chord 

(fourth chord). 

In the example of Figure 4 a tonal chord progression by 

G. Gershwin is presented. Chromaticism is apparent in 

this passage. The GCT ‘agrees’ with the roman numeral 

analysis of the excerpt including the Italian sixth chord 

that is labelled as 8,[0,4,10], and it even labels the chord 

that was left without a roman numeral tag by the analyst 

(see question mark) encoding it as a minor chord with 

sixth on the flattened sixth degree (Gb-Bbb-Db-Eb) 

(Note: actually it could be even encoded as a half-

diminished 7
th

 on the fourth degree Eb-Gb-Bbb-Db). 

 

Figure 4. G. Gershwin, Rhapsody in Blue (reduction of 

first five measures). Top row: roman numeral harmonic 

analysis; bottom row: GCT analysis. GCT successfully 

identifies all chords (see text). 

Figure 5 illustrates an Early Renaissance example of 

fauxbourdon by G. Dufay. Parallel motion of voices is 

typical in this idiom. The GCT labels correctly all dyads 

and triads, taking into account musica ficta that produces 

rather unusual chord progressions in regards to standard 

tonal harmony. 

 

Figure 5. G. Dufay’s Kyrie (reduction) - first phrase in 

A phrygian mode that exemplifies parallel motion in 

fauxbourdon and a phrygian cadence (early Renais-

sance). GCT correctly identifies and labels the open 

fifths as well as the triadic chords. 

In Figure 6 an example from the polyphonic singing tra-

dition of Epirus is presented. This very old 2-voice to 4-

voice polyphonic singing tradition is based on the anhem-

itonic pentatonic pitch collection and more specifically 

the pentatonic minor scale that functions as source for 

both the melodic and harmonic content of the music. A 

unique harmonic aspect of these songs is the unresolved 

dissonances (major second and minor seventh intervals) 

at structurally stable positions of the pieces (e.g. cadenc-

es).  In the example two GCT versions are presented: the 

first (top row) depicts the encoding for the standard con-

sonance vector and the second (bottom row) presents the 

GCT labelling that considers additionally major seconds 

and minor sevenths as ‘consonant’ (it is the same as for 

the ‘atonal’ consonance vector as no minor seconds and 

major sevenths exist in the idiom). It is interesting to note 

that for the standard consonance vector almost all chords 

have the drone tone as their root. On the other hand, in 

the second encoding  different relations between chords 

become apparent (e.g. 10,[0,2,5] and 10,[0,2,5,7]) and 

also an oscillation of the chord ‘root’ between the tonic 

and a note a tone lower is highlighted. Polyphonic songs 

from Epirus are the focus of a different study [19]. 

 

Figure 6 Excerpt from a traditional polyphonic song 

from Epirus. Top row: GCT encoding for standard 

common-practice consonance vector; bottom row: GCT 

encoding for atonal harmony – all intervals ‘consonant’ 

(this amounts to pc-set ‘normal orders’) 

4.2 Learning and generation with GCT 

In a current study, the GCT representation has been uti-

lised in automatically analysing and encoding scores (ac-

tually, harmonic reductions of scores) from diverse idi-

oms, and then employing this extracted information for 

melodic harmonisation. In [20] the authors discuss the 

utilization of a well–studied probabilistic methodology, 

namely, the hidden Markov model (HMM) methodology, 

in combination with constraints that incorporate fixed 

beginning and ending chords and intermediate anchor 

chords; to this end, a constrained HMM (CHMM) is de-

veloped. This work is motivated by the fact that the be-
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ginning and the cadence of a phrase/piece is characteristic 

of its structural identity; such characteristic structural 

points in pieces can be modelled using higher-level hier-

archical models (e.g. probabilistic grammars). Addition-

ally, the CHMM methodology allows for the manual in-

sertion of intermediate chords, providing alternative har-

monisations that comply with specific constraints. 

The reported results indicate that the CHMM method, 

harnessed with the novel General Chord Type (GCT) 

algorithm, functions effectively towards convincing me-

lodic harmonisations in diverse idioms. In Figures 7 & 8, 

two examples of melodic harmonisation are illustrated for 

a Bach chorale melody and for a traditional melody from 

Epirus. In both cases, the system has been trained on a 

corpus of harmonic reductions of pieces in the idiom, 

and, then, used to generate new melodic harmonisations. 

The results are very good: the Bach chorale harmonisa-

tion is typical of the style and at the same time not trivial 

(uses secondary dominants that enrich the harmonisa-

tion); the Epirus melody harmonisation is close to the 

style of polyphonic singing (if additional melodic and 

rhythmic elements were added the phrase would become 

rather typical of the idiom). 

 

Figure 7. Automatically generated GCTs for a Bach 

Chorale melody employing a HMM for fixed bounda-

ries (first and last chords are given). Voice leading has 

been arranged manually. 

 

 

Figure 8. Automatically generated GCTs for an Epirus 

melody (reduced version) employing a HMM for fixed 

boundaries. Voice leading has been arranged manually. 

4.3 Discussion and future development 

The current version of GCT encodes only the chord type 

and the relative position of its ‘root’ to the local tonic of a 

given scale. However, it can readily be extended to in-

corporate explicit information on chord inversions (i.e. 

bass note position), on scale degrees (chromatic notes 

that do not belong to the current scale can be tagged so 

that indirectly scale degrees are indicated), and, even, on 

voice-leading (for instance, motion of bass, or even for 

note extensions that may require resolution by down-

wards step-wise motion). A rich chord representation 

should embody such information. 

The organisation of tones by GCT for the ‘standard’ 

consonance vector gives results quite close to those pro-

duced by the stack-of-thirds technique, as implicit in the 

latter is consonance of thirds and fifths (as two thirds sum 

up to a fifth). Some difference are:  

• the stack-of-thirds approach usually requires 

traditional note names (that allow enharmonic 

spellings) whereas the GCT is based on pitch classes 

(no direct explicit link to a scale). For instance, GCT 

considers the chord CEG# or CEAb ([0,4,8]) as 

consonant since its intervals are pairwise consonant
1
, 

i.e. two 4 semitone intervals (major thirds) and one 8 

semitone interval (minor sixth or augmented fifth) 

with root any one of the three tones; stack-of-thirds 

determines C as the root in the first case and Ab in the 

second case. The GCT algorithm misses out on 

sophisticated tonal scale information but is still 

informative at the same time being simpler, and easier 

to implement. 

• in the standard consonance vector version of GCT, 

diminished fifths are not allowed whereas in the 

stack-of-thirds approach all fifths are allowed. For 

instance, the root of the half-diminished chord BDFA 

is B according to the stack-of-thirds whereas GCT 

considers D as the root and B as a sixth above the root 

(DFAB), i.e. diminished triads are not consonant 

chords according to CGT. Of course, the consonance 

vector in GCT may be altered so that the tritone is 

also consonant in which case the two approaches are 

closer. 

• the stack-of-thirds method allows empty third 

positions in the lower part of the stack whereas GCT 

always prefers to have a compact consonant set of 

pitches at the bottom. For instance, a chord 

comprising of notes: CEFG ([0,4,5,7]) will be 

arranged as FCEG by the stack-of-thirds technique 

and CEGF ([0,4,7,17]) by GCT. 

In relation to the virtual pitch root finding method, the 

proposed approach differs in that minor thirds are equally 

consonant to major thirds allowing equal treatment of 

major and minor chord (as opposed to the virtual pitch 

approach that is biased towards major thirds due to the 

structure of the harmonic series).  

It is also possible to redesign the GCT algorithm alto-

gether so as to make use of non-binary conso-

nance/dissonance values allowing thus a more refined 

consonance vector. Instead of filling in the consonance 

vector with 0s and 1s, it can be filled with fractional val-

ues that reflect degrees of consonance derived from per-

ceptual experiments (e.g., [21]) or values that reflect cul-

turally-specific preferences. Such may improve the algo-

rithm’s performance and resolve ambiguities in certain 

cases (future work). 

5. CONCLUSIONS 

In this paper a new representation of chord types has been 

presented that adapts to diverse harmonic idioms allow-

ing the analysis and labelling of tone simultaneities in 

any harmonic context. The General Chord Type (GCT) 

                                                             
1
 Question: why is the augmented triad considered dissonant 

when all its tones are pairwise consonant? 
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representation, allows the re-arrangement of the notes of 

a harmonic simultaneity such that idiom-specific types of 

chords may be derived. Given a consonance/dissonance 

classification of intervals (that reflects culturally-

dependent notions of consonance/dissonance), and a (set 

of) scales, the GCT algorithm finds the maximal subset of 

notes of a given note simultaneity that contains only con-

sonant intervals; this maximal subset forms the basis up-

on which the chord type is built. The proposed represen-

tation is ideal for hierarchic harmonic systems such as the 

tonal system and its many variations, but adjusts to any 

other harmonic system such as post-tonal, atonal music, 

or traditional polyphonic systems. 

The GCT representation was applied to a small set of 

examples from diverse musical idioms, and its output was 

presented and analysed showing its potential use, espe-

cially, for computational music analysis and music in-

formation retrieval tasks. The encoding provided by GCT 

is not always correct according to the interpretation given 

by music theorists, but, at least, it is consistent (i.e. a cer-

tain chord will always be encoded the same way) render-

ing it adequate for machine learning and  generation (e.g. 

melodic harmonisation) where music theoretical correct-

ness is not so important. Sometimes GCT ‘uncovers’ 

chordal relations that are obscured by notation and en-

harmonic spellings, and may assist a musician in harmon-

ic analysis. Overall, the proposed encoding seems to be 

promising and potentially useful in computational music 

applications. 
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