
Real-time Music Composition through P-timed Petri Nets

Adriano Baratè, Goffredo Haus, Luca A. Ludovico

Dipartimento di Informatica (DI)

Università degli Studi di Milano

Via Comelico 39, 20135 Milano, Italy

{barate, haus, ludovico}@di.unimi.it

ABSTRACT

This paper introduces a new real-time concept of reconfig-

urable P-timed Petri nets. Our goal is to provide a formal

model to build and modify a net on the fly. In the first

part of the article, the original P-timed extensions are sum-

marized. Then we define an endomorphism that alters the

original Petri net in real time; for instance one can change

the number of tokens or the net structure. The endomor-

phism is applied to Music Petri nets, showing how this new

approach can be effective in real-time synthesis of music.

The final case study provides a practical application by il-

lustrating the real-time creation of a simple piano loop.

1. INTRODUCTION

The present work discusses an innovative approach to the

concept of real-time modification in reconfigurable P-timed

Petri nets.

Modifiable Petri nets have been already explored in a

number of scientific papers, such as [1], [2], and [3]. In

those cases, the main aim was to define the evolution of

model properties with respect to net modifications, but the

aspects related to real time were not relevant for the discus-

sion. On the contrary, our approach takes advantage from

a real-time interaction with Petri nets structure.

The first part of the paper concerns the basic theory of

Petri nets. In Section 2, the original P-timed extensions

are summarized, and some new features are introduced.

Section 3 addresses the specific case of real-time modifi-

cations.

The aim of the second part is applying Petri nets to the

music composition field.

The relationship between Petri nets and music has been

explored in a number of previous scientific works. One of

the milestones is [4], where the authors define how to de-

scribe and process music through Petri nets. In [5] an early

software tool for the synthesis of music scores through

Petri nets is presented. More recent works address the

applicability of this formal tool to music analysis [6] and

composition [7].

Copyright: c©2014 Adriano Baratè, Goffredo Haus, Luca A. Ludovico et

al. This is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original author

and source are credited.

In the mentioned approaches real-time modifications 1 of

the net are not supported. For analysis purposes, this is not

a relevant limitation. Depending on its characteristics, an

existing composition could be either easy (e.g. canons and

fugues) or hard (e.g. free-jazz improvisations) to describe

through Petri nets; however, in neither case the resulting

Petri net requires on-the-fly adjustments.

As regards composition through Petri nets, the process

can follow different approaches. A composer can conceive

the structure of the whole piece a priori, so that real-time

modifications are not required. On the other hand the com-

poser can adopt techniques aiming at a continuous manip-

ulation of existing fragments.

This approach is commonly accepted in some specific

music styles. For example, Minimalism [8] is a form of

experimental music strongly based on the gradual transfor-

mation of music fragments and on the reiteration of musi-

cal phrases or smaller units (e.g. figures, motifs, etc.). In

this case, a Petri net could be employed to encode and mu-

tually link smaller music entities, thus providing the basic

pattern of the piece, while on-the-fly modifications could

be easily applied in order to obtain gradual transforma-

tions.

Analogous processes can be applied to a more traditional

context, too. For instance, Arnold Schönberg tried to ap-

proach this matter systematically in [9], where he described

how to transform music entities and how to build complex

structures from simpler ones. Also Heinrich Schenker in

many theoretical works revealed his interest towards struc-

tures and their modifications. In [10] he states that “the

act of tonal composition depends on the composer’s sense

of the fundamental structure”, and “the secret of balance

in music ultimately lies in the constant awareness of the

transformation levels and the motion from foreground to

background or the reverse”. Finally, let us cite the research

by Fred Lerdahl and Ray Jackendoff about a generative

theory of tonal music [11], where the concepts of rhythmic

structure, grouping structure, metrical structure and their

interconnections are detailed.

Modifiable Petri nets are fit for modelling dynamic be-

haviour, thus allowing the composer to modify the net on

the fly, namely during the performance of the music piece.

Music Petri nets will be formally discussed in Section 4,

whereas the modifications supported by our model will be

detailed in Section 5.

1 Here for real-time modifications we mean those changes that can oc-
cur during the performance of the piece.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 408 -

mailto:barate@di.unimi.it
http://creativecommons.org/licenses/by/3.0/

2. P-TIMED PETRI NETS WITH PROBABILISTIC

ARC WEIGHTS

In the classical Petri net theory, places and transitions have

no tempo parameters associated. When a token arrives at

a place, it will be immediately ready to be transferred to

outgoing transitions. The duration of a transition firing is

equal to zero. For performance evaluation, a number of

extensions has been introduced, associating timings with

various elements of a Petri net [12] [13] [14]. Common

implementations are deterministic and stochastic Petri nets

[15] [16]. In the stochastic case time is modelled through

probability distributions, in deterministic Petri nets time is

directly associated with places, transitions and/or tokens.

In this work we use P-timed deterministic Petri nets [17],

where a timing parameter is associated with places. Using

this extension, when one or more tokens arrive at a given

place, they are reserved for a specified interval, and only

after this time lapse the outgoing transitions are enabled to

(eventually) take the tokens.

Now we provide the definition of P-timed Petri nets.

Definition 1. A P-timed Petri net is a 8-tuple

PN = (P,T,A, c,wt,m0,wp, τ), where:

1. P is a finite set of places

2. T is a finite set of transitions

3. A is a finite set of arcs

4. c : P → N is the capacity of places

5. m0 : P → N0 is the initial marking of places

6. P ∩T = ∅

7. P ∪T 6= ∅

8. A ⊆ (P×T) ∪ (T×P)

9. dom(A) ∪ ran(A) = P ∪T, where

dom(A) = {x ∈ P ∪T | ∃y ∈ P ∪T, (x, y) ∈ A}
ran(A) = {y ∈ P ∪T | ∃x ∈ P ∪T, (x, y) ∈ A}

10. ∀p ∈ P : m0(p) ≤ c(p)

11. ∀(x, y) ∈ A :(y, x) /∈ A

12. wt : A → N is the arcs’ tokens weight

13. wp : A → N0 is the arcs’ probabilistic weight

14. τ : P → R
+
0 is the timing associated with places

In this definition items ranging from 1 to 5 define the

nomenclature of the model, while the following items spec-

ify the common requirements in order that:

1. a node must be either a place or a transition;

2. the net must contain at least a node;

3. an arc must connect a place to a transition;

4. all nodes must be connected to other nodes with an

arc;

5. every marking must be equal to or lower than the

corresponding initial capacity;

6. if an arc connects a place to a transition, the same

transition cannot be connected to the same place in

the opposite direction by another arc.

The last three items introduce a nomenclature not com-

mon in all types of Petri nets:

1. the classical definition of arc weight, here called to-

kens weight to distinguish it from the definition that

follows;

2. a new weight associated with arcs, that serves in al-

ternative or conflict situations, to control the proba-

bility of chosing a particular transition for firing (as

considered in Definition 2);

3. a number that specifies the time to wait before the

tokens present in a place can be considered free to

leave that place.

The corresponding firing rule must consider both the time

associated with single places and the probabilistic weights

of arcs:

Definition 2. Let PN be a P-timed Petri net, with its

components denoted by

PPN,TPN,APN, cPN,wtPN,m0PN,wpPN, τPN.

1. mt : PPN → N0 is called a marking at time t of

places iff

∀p ∈ PPN: mt(p) ≤ cPN(p),

and t− t0(p) > τ(p), where t0(p) is the time of the

previous marking change.

For the sake of clarity, in the following let m be a

marking of PN.

2. IN(n) = {x ∈ P ∪T :(x, n) ∈ APN} is the set of

input nodes of n, where n ∈ P ∪T

3. OUT(n) = {y ∈ P ∪T :(n, y) ∈ APN} is the set

of output nodes of n, where n ∈ P ∪T

4. A transition t ∈ TPN is enabled iff

∀p ∈ IN(t): m(p) ≥ wtPN(p, t)
∀p ∈ OUT(t): m(p) ≤ cPN(p)−wtPN(t, p)

5. An enabled transition t may fire, changing the cur-

rent marking m in m
′ such that ∀p ∈ PPN :

m
′(p) =

m(p)−wtPN(p, t) ⇐⇒ p ∈ IN(t)
m(p) +wtPN(t, p) ⇐⇒ p ∈ OUT(t)
m(p) otherwise

6. E(m) = {t ∈ TPN | t is enabled} is the set of en-

abled transitions

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 409 -

7. twp(t) =
∑

x=t∨y=t
wp[(x, y)] is the total prob-

abilistic weight of t

8.
(

∃t ∈ E(m) | twp(t) > 0
)

=⇒ ∀ti ∈ E(m) :

P (ti) =
twp(ti)

∑

t∈E(m)
twp(t)

is the probability of choos-

ing ti as the first transition to fire

9.
(

∀t ∈ E(m) : twp(t) = 0
)

=⇒ ∀ti ∈ E(m) :

P (ti) =
1

‖E(m)‖
is the probability of choosing ti

as the first transition to fire

While the first concepts of the previous definition are

commonly accepted, the last three items involve the new

concept of probabilistic weight. The definitions state that,

when many transitions are enabled to fire, the probability

of choosing one specific transition can be calculated as fol-

lows:

• If all the enabled transitions have all the input/output

arcs with probabilistic weights equal to 0, the first

transition to fire is chosen randomly;

• If at least one of the enabled transitions has a proba-

bilistic weight of the input/output arcs greater than

0, the probability of choosing one specific transi-

tion to fire is the sum of its input/output probabilistic

weights divided by the sum of all the input/output

probabilistic weights of all the enabled transitions.

An example of probabilistic weight is presented in Figure

1. In this net there are three transitions and an input place

with only one token. T1, T2, and T3 are enabled but as al-

ternatives. The three incoming arcs of the transitions have

different probabilistic weights, represented by numbers in-

side square brackets, while the outgoing arcs have the same

probabilistic weight equal to 0 (omitted by convention). In

this case the probabilities to fire are:

P (T1) =
2 + 0

2 + 0 + 3 + 0 + 100 + 0
=

2

105
= 1.9%

P (T2) =
3 + 0

2 + 0 + 3 + 0 + 100 + 0
=

3

105
= 2.9%

P (T3) =
100 + 0

2 + 0 + 3 + 0 + 100 + 0
=

100

105
= 95.2%

It must be noted that the probability of choosing one of

the firing transitions dynamically changes with the evolu-

tion of the net. In the previous example, let us consider the

net as a part of a more complex one, with tokens arriving

many times at place P1; case by case not all the transitions

could be enabled: if P4 has reached its capacity, it cannot

be considered for firing, and the probabilities of choosing

either T1 or T2 change respectively to 2
5 = 40% and to

3
5 = 60%.

The probabilistic weight is used in this work when: i) two

or more transitions are in alternative, but ii) we want to

Figure 1. An example of probabilistic arc weights.

Figure 2. An example of use of probabilistic arc weights

of value 0.

follow a specific path until a particular event occurs. 2 To

accomplish this, the last transition to fire must have all the

input/output arcs with probabilistic weights equal to 0. An

implementation of a loop structure that uses this concept is

presented in Figure 2. In this model the arc connecting InP

to InT has a probabilistic weight set to 1. From the point

of view of InP, there is an alternative situation every step

of the loop, since it has to choose what transition can fire

between InT and ExitT. The probabilistic weight resolves

this non-deterministic situation, always choosing InT in-

stead of ExitT. When the loop process is completed, the

Counter place is empty, and InT is no more enabled. Only

in this case, since no other transition is enabled, ExitT fires

– even if it has an associated arc with probabilistic weight

of zero – thus exiting the loop.

3. REAL-TIME MODIFICATIONS

This section focuses on how Petri nets can be used in a

real-time environment by changing net parameters on the

fly, i.e. when a model is being executed. All supported

modifications to Petri nets affect the model itself and the

firing rule from a theoretical point of view.

2 For this goal, transition priority could be used instead of probabilistic
weight, but this concept is far more versatile. For example, in other cases
probabilistic weight could be employed to implement a non-deterministic
net.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 410 -

Now we will list the possible real-time modifications 3 of

a Petri net:

• modification of place marking (PM): when adding or

subtracting a number of tokens in a place, the place

capacity is automatically incremented - if needed -

to contain the new number of tokens;

• modification of place capacity (PC): the marking is

automatically decremented if the specified capacity

is less than the number of tokens contained in the

place;

• modification of arcs’ tokens weight (ATW);

• modification of arcs’ probabilistic weight (APW);

• modification of the set of places (PP): if a place is

added, by default the new place has marking equal

to 0, capacity equal to 1, and timing equal to 0; if

a place is removed, all its input/output arcs are re-

moved too;

• modification of the set of transitions (TT): if a transi-

tion is removed, all its input/output arcs are removed

too;

• modification of the set of arcs (AA): if an arc is

added, by default the new arc has a tokens weight

equal to 1 and a probabilistic weight equal to 0.

Modifications can happen at any time, and they must be

considered atomic. When a modification occurs, the tran-

sition firing rule must be instantly applied, as the new pa-

rameters could have created new firing conditions. The

possible modifications of the net occur in zero time.

Since a real-time Petri net can be constructed from scratch,

conditions 7 and 9 of Definition 2 must not be considered

during the real-time modification of parameters. Thus, a

Petri net can either be empty, or have unconnected nodes.

After these considerations, we are ready to provide a for-

mal definition of real-time modifications:

Definition 3. Let PN be a P-timed Petri net, with its

components at a certain time denoted by

P,T,A, c,wt,m0,wp, τ .

A real-time Petri net modification is an endomorphism

RTM ∈ {PM,PC,ATW,APW,PP,TT,AA} of PN

where

1. PM(PN,p,k) = (P,T,A, c′,wt,m
′
0,wp, τ),

where m
′
0(p) = k, and c

′(p) = max (c(p), k)

2. PC(PN,p,l) = (P,T,A, c′,wt,m
′
0,wp, τ),

where c
′(p) = l, and m

′
0(p) = min (m0(p), l)

3. ATW(PN,a,m) = (P,T,A, c,w′
t,m0,wp, τ),

where w
′
t(a) = m

3 Please note that all the modifications are done when a net is execut-
ing, and not at design time.

4. APW(PN,a,n) = (P,T,A, c,wt,m0,w
′
p, τ),

where w
′
p(a) = n

5. PP(PN,p) = (P′,T,A′, c′,wt,m
′
0,wp, τ

′), where

(a) if p /∈ P

i. P
′ = P ∪ {p}

ii. A
′ = A

iii. c
′(p) = 1

iv. m
′
0(p) = 0

v. τ ′(p) = 0

(b) if p ∈ P

i. P
′ = P \ {p}

ii. A
′ = A \ {

⋃

x=p∨y=p

(x, y)}

iii. c
′ = c

iv. m
′
0 = m0

v. τ ′ = τ

6. TT(PN,t) = (P,T′,A′, c,wt,m0,wp, τ), where

(a) if t /∈ T

i. T
′ = T ∪ {t}

ii. A
′ = A

(b) if t ∈ T

i. T
′ = T \ {t}

ii. A
′ = A \ {

⋃

x=t∨y=t

(x, y)}

7. AA(PN,(x, y)) = (P,T,A′, c,w′
t,m0,w

′
p, τ), where

(a) if (x, y) /∈ A

i. A
′ = A ∪ {(x, y)}

ii. w
′
t[(x, y)] = 1

iii. w
′
p[(x, y)] = 0

(b) if (x, y) ∈ A

i. A
′ = A \ {(x, y)}

ii. w
′
t = wt

iii. w
′
p = wp

for every value of the parameters p, t, (x, y), k, l,m, n,

varying in the following sets: p ∈ P; t ∈ T; (x, y) ∈
A; k, n ∈ N0; l,m ∈ N.

As regards the notation adopted in the previous definition,

please note that each modification step creates a new net

that can be seen as the original one for a possible further

modification.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 411 -

4. MUSIC PETRI NETS

At LIM (Laboratorio di Informatica Musicale) of the Uni-

versità degli Studi of Milan, Petri nets have been applied to

the music field since 1982. In particular, early papers [18]

investigated the possibility of describing causality in music

processes through the formal approach of Petri nets, while

only recent studies focus on music creation. Different ap-

plications of this formalism to music analysis do lead to

contradictory results depending on the repertoire. On one

side Ravel’s Bolero has been well modelled as in [19], but

on the other some limitations became evident with a com-

plex work such as Stravinsky’s Rite of Spring [20].

In this section we summarize our approach on using P-

timed Petri nets in music contexts, partly derived from past

applications. The first definitions to be clarified are the

concepts of music objects and music algorithms.

A music object is anything carrying a music meaning, in-

cluding a note, a sequence of notes, rests, device-control

commands. It must be clear that at this level of abstrac-

tion implementations of music objects are not important:

e.g. sequences of notes can be expressed in terms of MIDI

commands, MP3 files, textual representations, and so on;

but for the goals of this work, we do not care.

While music objects represent music entities of some kind,

a music algorithm is whatever function applicable to such

objects. Music algorithms include not only well-known

transformations of music fragments, such as transposition,

retrogradation, inversion, but also loudness control, instru-

ment change, complex mathematical functions.

In our model music objects can be associated with places

and music algorithms to transitions. A particular parame-

ter – set place by place – indicates if the associated music

object has to be played, or only transferred to the output

transitions. The following rules apply when a Music Petri

net is executed:

• When a place P receives n tokens from an input tran-

sition T:

– If P has an associated music object MO of du-

ration t∗ and the playing parameter is set:

∗ n simultaneous executions of MO are played

and τ(p) = t∗ (i.e. while playing, the new

tokens cannot be considered for firing);

∗ after the end of the performance (i.e. when

t− t0(p) > τ(p)), the n tokens are free to

leave P;

∗ MO is passed to output transitions.

– If P has an associated music object MO and

the playing parameter is not set:

∗ the n tokens are free to leave P;

∗ MO is passed to output transitions.

– If the place has no associated music objects:

∗ If T has a music object MO of duration t∗

in output:

· MO is retrieved from T;

· n simultaneous executions of MO are

played and τ(p) = t∗ (i.e. while play-

ing, the new tokens cannot be consid-

ered for firing);

· after the end of the performance (i.e.

when t − t0(p) > τ(p)), the n tokens

are free to leave P;

· MO is passed to output transitions.

∗ If T has no music objects in output:

· the n tokens are free to leave P.

• When a transition T fires and receives n1, n2, ...,nm
tokens from m input places P1,P2, ...,Pm, possibly

containing music objects MO1,MO2, ...,MOm:

– if T has an associated music algorithm MA, it

is applied to input music objects;

– the k non-empty input music objects, modified

by MA, are mixed, thus obtaining a new music

object MO;

– MO is ready to be passed to all the outgoing

places.

Further details on Music Petri nets can be found in [6]

and [7].

5. REAL-TIME MUSIC PETRI NETS

In the field of Music Petri nets, real-time modifications

generate changes in the produced music. In this section we

show how this is accomplished. Let us focus on some of

the modification types introduced in the Section 3 and on

the changes related to music objects and music algorithms:

• modification of place marking (PM): if the place does

not contain an associated music object, nothing hap-

pens in terms of music performance. If a music ob-

ject is present and n tokens are added, n new istances

of that object are played, while if m tokens are sub-

tracted, m current playing music objects are stopped;

• modification of place capacity (PC): if the capac-

ity is decremented, the considerations about place

marking modifications must be applied;

• modification of the set of places (PP): if a playing

place is removed, the execution stops and the set of

enabled transitions is evaluated again;

• modification of associated music objects (MO): if

the place has n > 0 tokens, the current music-object

performances, if present, are stopped, and n new in-

stances of the new music object are executed;

• modification of associated music algorithms (MA).

In general terms, the only immediate effect of these modi-

fications is the performance of n new music objects, whereas

most changes modify the net structure but their effects are

produced while the net execution is running.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 412 -

Figure 3. The original fragments MO1 and MO2, and the

derived objects MO3 and MO4.

By using this new paradigm a composer/performer can

create music in real-time, by mixing and altering a set of

pre-prepared music objects. In this manner, one can con-

centrate on the structure of the music piece, at a higher

level of abstraction in respect of notes and rests. Basically

this leads to a wide set of possibilities ranging between two

opposite approaches:

• a complex Music Petri net model is constructed in

advance and the performer changes some of its char-

acteristics while music is playing;

• a Music Petri net is built from scratch, starting with

an empty model and creating a complex model step

by step.

6. CASE STUDY: A PIANO LOOP

In this section we will describe a case study addressing

real-time modifications of Petri nets applied to music scores.

In particular, the creation of a simple piano loop will be

discussed.

A relevant aspect is the intentionally basic toolkit em-

ployed in this example. It is limited as regards:

• the number of starting music objects, including only

MO1, i.e. a whole note, and MO2, i.e. a whole rest

(see Figure 3);

• the number of music algorithms, embracing only 3

melodic operators (MAm1: “transpose one minor third

up”, MAm2: “transpose one perfect fifth up”, MAm3:

“transpose one octave down”) and 1 rhythmical op-

erator (MAr: “divide-by-4”).

Having a limited number of elements to manage is im-

portant for an easy interaction with the interface. Yet this

toolkit proves to be sufficiently complete to provide both

flexibility and variety to the final result. In fact such basic

elements can be used to build Petri nets that are more and

more complex, supporting multiple voices melodically and

rhythmically independent. Moreover, a number of modifi-

cations can occur in real time, so that the user can build a

(potentially) complex music performance by applying (po-

tentially) simple processes.

The following example will illustrate such concepts by

showing some of the modification techniques introduced

in Section 5.

First, we want to create some basic patterns starting from

the previous ones. This process can be performed in real

time as well as in a setup phase. Now let us consider

Figure 4. The 4-times repetition of music fragment MO3.

the former case, but in the following the latter will be ad-

dressed too.

The rhythmical value of MO1 is reduced from a whole

to a quarter note by applying MAr, thus obtaining MO3.

Another basic pattern, namely MO4, can be built from a

suitable combination of MO1 and MO2. The desired rhyth-

mic pattern is a quadruplet made by 1 rest followed by 3

notes, whose total duration is a quarter note. Both MO1

and MO2 undergo a double application of MAr, so that

they finally represent a sixteenth note and a sixteenth rest.

As regards the pitch of the former fragment, it is transposed

up by MAm1 to obtain both the first note and the third note,

and by MAm2 for the second note. The quadruplet will be

identified as fragment MO4, which in terms of Petri nets

represents a subnet. Needless to say, in our approach also

subnets can be dynamically modified, as illustrated below.

Also MO3 and MO4 are shown in Figure 3.

Now we will describe a real-time compositional process

based on the fragments previously prepared. The first step

consists in the 4-times repetition of MO3, with no further

melodic nor rhythmical modification. Figure 4 shows the

music score referring to an undefined number of iterations,

and Figure 5 presents the corresponding Petri net. The

number of tokens in P1 allows to control the number of

repetitions for the whole structure: in this case it is set to

3. P1 lets the user achieve a basic on-the-fly modification

of the net, even if its topology does not change: by adding

tokens, the number of repetitions will be increased accord-

ingly.

Figure 5. The Petri net for 3 iterations of the 4-times rep-

etition of music fragment MO3.

In order to understand the graphical representation of the

net, it is worth to recall some conventions exposed in [6].

Places can present three different background colors: white

for empty places, i.e. places with no MO assigned; solid

gray for places containing MOs; gray pattern for subnets.

For instance, Figure 5 presents a subnet that subsumes the

fragment shown in Figure 6.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 413 -

Figure 6. Single performance of music object MO3.

Figure 7. Concurrent performance of music object MO3

and MO4.

In our scenario, the execution of the net has started and

we want to add other voices on the fly. This kind of in-

teraction is very simple to be achieved even in a real-time

performance environment. For instance, the subnet shown

in Figure 6 is modified by connecting also the fragment

MO4, as shown in Figure 7. Similarly, the musician can

add a lower voice made of whole notes, namely fragments

obtained by transposing MO1 one octave below through

MAm3. In this case, the composer has changed net topol-

ogy on the fly. What we have described results into the net

of Figure 8, and the corresponding music score is provided

in Figure 9.

Figure 8. The Petri net for 3 iterations of the enriched

music fragment.

Another kind of modification that can occur involves the

behaviour of music algorithms. For example, let us rede-

fine the meaning of MAm3 at each loop iteration: at step 1

MO1 is transposed an octave below, at step 2 a major ninth

below, and at step 3 a minor tenth below. The resulting

score is provided in Figure 10.

Finally, let us change the music content of MO2 in real

time, for instance changing the rest with an F-pitched note

during the third loop iteration. The result is shown in Fig-

Figure 9. The resulting music score for Petri net in Figure

8.

Figure 10. The effect of real-time MAm3 redefinitions.

ure 11.

7. CONCLUSIONS

In this work modifiable Petri nets have been introduced

from a formal point of view and then applied to music com-

position. Real-time modifications of Petri nets can occur at

different level, influencing not only place marking but even

their topology. Needless to say, the possibility to interact

with net structure, coupled to a number of already known

features (concurrent processes, probabilistic weights, etc.),

provides a user with a powerful tool to modify the model

on the fly. In the music field, this is a relevant feature for

composers who manipulate music information.

The final case study has briefly shown some of the possi-

ble modifications that are easy to be achieved in a real-time

environment.

As regards future works, since Petri nets are a formalism

usually far from the way of thinking of a traditional com-

poser, software tools should be designed and developed to

implement a musician-oriented interface.

8. REFERENCES

[1] J. Barros and L. Gomes, “Net model composition and

modification by net operations: a pragmatic approach,”

in Industrial Informatics, 2004. INDIN’04. 2004 2nd

IEEE International Conference on. IEEE, 2004, pp.

309–314.

[2] H. Ehrig and J. Padberg, “Graph grammars and Petri

net transformations,” Lectures on Concurrency and

Petri Nets, pp. 65–86, 2004.

Figure 11. The effect of a real-time MO2 redefinition at

measure 3.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 414 -

[3] H. Ehrig, K. Hoffmann, J. Padberg, U. Prange, and

C. Ermel, “Independence of net transformations and

token firing in reconfigurable place/transition sys-

tems,” Petri Nets and Other Models of Concurrency–

ICATPN 2007, pp. 104–123, 2007.

[4] G. Haus and A. Rodriguez, “Music description and

processing by Petri nets,” Advances in Petri Nets 1988,

pp. 175–199, 1988.

[5] G. Haus and A. Sametti, “Scoresynth: a system for the

synthesis of music scores based on Petri nets and a mu-

sic algebra,” Computer, vol. 24, no. 7, pp. 56–60, 1991.

[6] A. Baratè, G. Haus, and L. Ludovico, “Music analy-

sis and modeling through Petri nets,” Computer Music

Modeling and Retrieval, pp. 201–218, 2006.

[7] A. Baratè, G. Haus, and L. Ludovico, “Petri nets ap-

plicability to music analysis and composition,” in Pro-

ceedings of the International Computer Music Confer-

ence’07 (ICMC 2007), 2007, pp. 97–100.

[8] K. Potter, Four musical minimalists: La Monte Young,

Terry Riley, Steve Reich, Philip Glass. Cambridge

University Press, 2002, vol. 11.

[9] A. Schoenberg, G. Strang, and L. Stein, Fundamentals

of musical composition. Faber & Faber, 1967.

[10] H. Schenker and O. Jonas, “Der freie Satz,” 1956.

[11] F. Lerdahl and R. Jackendoff, A generative theory of

tonal music. MIT Press, 1996.

[12] C. Ramchandani, “Analysis of asynchronous concur-

rent systems by timed Petri nets,” Massachusetts Insti-

tute of Technology, Tech. Rep., 1974.

[13] J. Wang, Timed Petri nets: Theory and application.

Kluwer Academic Publishers Norwell, 1998, vol. 39.

[14] W. Zuberek, “Timed Petri nets and preliminary perfor-

mance evaluation,” in Proceedings of the 7th annual

symposium on Computer Architecture. ACM, 1980,

pp. 88–96.

[15] D. Kartson, G. Balbo, S. Donatelli, G. Franceschinis,

and G. Conte, Modelling with generalized stochastic

Petri nets. John Wiley & Sons, Inc., 1994.

[16] M. K. Molloy, “Performance analysis using stochas-

tic petri nets,” Computers, IEEE Transactions on, vol.

100, no. 9, pp. 913–917, 1982.

[17] J. Coolahan Jr and N. Roussopoulos, “Timing require-

ments for time-driven systems using augmented Petri

nets,” IEEE Transactions on Software Engineering,

vol. SE-9, no. 5, pp. 603–616, 1983.

[18] G. Degli Antoni and G. Haus, “Music and causality,”

in Proceedings of 1982 International Computer Music

Conference, 1983, pp. 279–296.

[19] G. Haus and A. Rodriguez, “Formal music representa-

tion; a case study: the model of Ravel’s Bolero by Petri

nets,” Music Processing. Computer Music and Digital

Audio Series, pp. 165–232, 1993.

[20] A. De Matteis and G. Haus, “Formalization of gen-

erative structures within Stravinsky’s “The rite of

spring”,” Journal of New Music Research, vol. 25,

no. 1, pp. 47–76, 1996.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 415 -

