
A Protocol for creating Multiagent Systems in Ensemble with Pure Data

Pedro Bruel

Universidade de São Paulo

pedro.bruel@gmail.com

Marcelo Queiroz

Universidade de São Paulo

mqz@ime.usp.br

ABSTRACT

This work presents a protocol for integration of two soft-

ware platforms, the Ensemble framework for musical mul-

tiagent systems and the Pure Data programming environ-

ment. Ensemble is written in Java and requires knowledge

of this language in order to access high-level features of the

framework, such as creating customized agent reasonings,

new event servers for non-supported data-types, or new

physical models for the virtual world. On the other hand,

Pure Data (Pd) is a very popular programming environ-

ment for real-time audio processing (among other things)

and has an ever-growing community of users interested in

sound and music applications. The protocol described here

allows Pd users with no knowledge of Java to create musi-

cal multiagent applications in Ensemble with a high degree

of flexibility, including configuration of parameters defin-

ing the virtual world, creation of agents and agent compo-

nents (sensors, actuators, memories and knowledge base)

and the definition of agent reasonings, which control agent

behaviour and agent interactions in the virtual world, all

from within Pd patches.

1. INTRODUCTION

The interest in multiagent systems in music started about

fifteen years ago, and several such applications have ap-

peared in the literature, which included distributed artifi-

cial intelligence concepts such as autonomous agents, vir-

tual world modelling and collaborative agent interactions,

in musical environments dealing with composition, impro-

visation and performance [1, 2, 3, 4, 5, 6, 7, 8]. Many of

these applications [9, 10, 11, 12, 13, 14, 15, 16] presented

a whole conception of the virtual world and its laws, and of

agents with specific cognitive and musical functions, fol-

lowing determined algorithms.

A few exceptions to this rule are systems designed to

aid the development of general musical multiagent appli-

cations, such as MAMA [4], ISO [5] and Ensemble [6, 8].

MAMA focused in agents which exchanged and produced

exclusively MIDI information; ISO is oriented towards the

idea of a swarm orchestra, where agents in a swarm are

controlled by complex collective behaviours. Ensemble

on the other hand concentrates on the idea of autonomous

agents, and has tackled from its inception both symbolic

Copyright: c©2014 Pedro Bruel et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

exchange (MIDI, text, musical data and algorithms) and

audio communication between agents immersed in a vir-

tual world, which required physical modelling of sound

propagation in various virtual realities (including, but not

restricted to, realistic 3D spherical sound propagation).

The Ensemble framework has been written in Java, to al-

low some degree of platform-independence, uses the JADE

multiagent middleware and depends on a sound engine,

such as Java Sound (over the native OS sound server), Port-

Audio or JACK. Although many existing components in

Java may be combined and assembled through XML con-

figuration files to produce a number of musical multiagent

applications, the high degree of flexibility that the frame-

work offers is only available to a Java-literate user, who is

thus able to design new components, new reasonings, new

event types and event servers, and ultimately new virtual

realities. Unfortunately for Ensemble, a number of poten-

tially interested users are not Java programmers and their

interest wane before the perspective of having to dive into

Java code.

libpd [17] is a project which allows programmers to ac-

cess and control Pure Data objects, patches and the whole

DSP engine from within other applications. The libpd API

is written in C and has language bindings for Java, which

allows Ensemble to benefit from this infrastructure, allow-

ing parts of the framework, that were originally meant to

be written in Java, to be defined in Pd and accessed through

libpd’s API. On one hand, this possibility requires not only

the incorporation (in Ensemble) of mechanisms for access-

ing and controlling Pd patches and the data that flows be-

tween Ensemble and these patches, but also defining a com-

plete protocol for accessing Ensemble agent structures, such

as sensors, actuators, memories and its knowledge base,

from within Pd patches. On the other hand, this integra-

tion provides the user with the ability of completely defin-

ing high level agent processes through Pd patches, and un-

leashes Ensemble from its requirement of Java-literacy (on

the part of the user).

This paper is structured as follows. Section 2 presents

the structures in Ensemble dealing with agent reasoning,

including components that exchange information with a

reasoning, such as sensors and actuators, memories and

knowledge bases. Section 3 describes libpd and the func-

tions that allow control of Pd patches from within Ensem-

ble. Section 4 describes the implemented Pd-Ensemble

protocol, which allow access to Ensemble structures from

within a Pd patch. Section 5 shows examples of how to

use the protocol to configure and control Ensemble appli-

cations. To conclude, section 6 evaluates the contributions

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1512 -

mailto:pedro.bruel@gmail.com
mailto:mqz@ime.usp.br
http://creativecommons.org/licenses/by/3.0/

of the proposed implementation and discusses the remain-

ing aspects of Ensemble that still require Java knowledge,

which lead to proposals of future work.

2. AGENT REASONING IN ENSEMBLE

Musical agents in Ensemble are computational entities in-

habiting a virtual world, with specific physical and biolog-

ical laws which are defined by the user (the application

designer). They use sensors and actuators as mediators

for all interactions with the virtual world and with other

agents. For instance, hearing sensors and sound-producing

actuators are used for capturing sound from the environ-

ment and producing sound in the environment, which will

reach other agents according to a user-defined sound prop-

agation law; motion actuators are used to allow the agent

to control its position within the virtual world, and contact

and sight sensors can be used to grasp information about

external agents and objects [6].

The environment itself is an agent in Ensemble, which

controls all kinds of agent-environment and agent-agent in-

teractions through event servers dealing with specific types

of information. For instance, an audio event server is the

recipient of all sound events produced by each (sound-

producing) actuator in the system, and is responsible for

carrying out the prescribed sound propagation law in order

to deliver sound to each (sound-capturing) sensor. Sen-

sors and actuators dealing with each type of information

are required to register themselves with the corresponding

event server in order to guarantee proper working of the

framework. Many pre-defined sensors and actuators for

most common tasks, such as sound-capturing and sound-

producing, motion and text message exchange, are avail-

able with all the technical details already implemented and

can be used readily in applications [8].

Reasonings play a central role in agent interactions, be-

cause in these components are the cognitive mechanisms

that analyse, combine, decide and synthesize every action

and sound that the agent is going to produce in the vir-

tual environment. Although creating agents and plugging

components can be done in Ensemble through simplified

XML initialization files, defining new forms of complex

behaviour for Ensemble agents was only possible by writ-

ing new Java components within the framework.

Reasonings are able to operate on several data that the

agent has access to, including sensor/actuator values and

the knowledge base, which is used to hold facts, theories,

memories, etc. Memories are a specialized type of stream

data that the agent may instantiate and use for its algorith-

mic processes, but are also automatically handled in the

case of sensor/actuator stream values. A sensor has a cor-

responding read-only memory that holds past received data

and is continually updated with the sensor’s input, and an

actuator reads the data that it will produce from a corre-

sponding memory, which has been previously filled by the

reasoning that wants to control that actuator.

In Ensemble lingo both Sensors and Actuators are Event-

Handlers which can behave periodically or sporadically;

periodic events are those produced and consumed at a fixed

rate (e.g. audio streams, video input and output) while spo-

radic events may be produced or consumed at any time,

without any assumed regularity (e.g. motion requests or

MIDI and text message exchange).

The former type is regulated by the Environment agent

through an EventServer, which periodically notifies all reg-

istered Actuators of the beginning of a cycle (which works

similarly to the DSP cycles in Pd or Jack, for instance).

Actuators then notify associated Reasonings through the

needAction() method, which establishes a deadline for data

to be written in the corresponding Memory for the Actuator

to produce in the next cycle. Sensors receive data from the

corresponding EventServer, write the received data in the

corresponding Memory and notify associated Reasonings

through the newSense() method.

Sporadic events are treated straightforwardly, through di-

rect communication between the related components: a

Reasoning writes an Event in an Actuator’s Memory, then

triggers the action that sends data to the EventServer, which

in turn delivers the Event to the appropriate Sensors, who

register it in their corresponding Memories and notify the

appropriate Reasonings of the incoming sense data.

Specialized components have been made available for sev-

eral common tasks, including AudioSensors / AudioActu-

ators / AudioMemories and MovementSensors / Movement-

Actuators / MovementEventMemories, that are treated by

the corresponding EventServers which implement many

alternatives for sound propagation and motion simulation

within the virtual world, including realistic 3D spherical

sound propagation (with the implied Doppler effect) and

rotation and acceleration instructions considering friction,

obstacles, etc. The use of these components in a Java-

written Reasoning is straightforward, and the proposed in-

terface between Ensemble and Pure Data makes these com-

ponents accessible through Pd Reasoning patches.

3. LIBPD AND ENSEMBLE

Libpd comprises a series of C functions that wrap a sub-

set of the Pd C API [17]. User interface, timing, threading

and audio API are left out of the wrapper, allowing ap-

plication code to use Pd as an embeddable Digital Signal

Processing library. The libpd C code compiles to a dy-

namic library that has bindings for several languages such

as Python, Java, Processing, and Objective-C, also sup-

porting Android and iOS applications. The developer is

then able to write applications that communicate with Pd

patches, sending and receiving data and using patches as

audio synthesis and prototyping systems [18, 19].

As opposed to what happens in traditional instances of

Pd, patches loaded by libpd receive and send audio sam-

ples via arrays, sent as arguments to a processing method

called by the user application. Also, internal clocks are

incremented only when such method is called, meaning

that audio sample calculations and DSP cycles are not af-

fected by what is done in the application until the process

method is called again. Because of this, objects that need

time tracking to function properly, such as

metro

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1513 -

will update their timers only when the application is pro-

cessing Pd cycles. For example, if Pd was initialized with

the default values of block size and sample rate, each call

to the process method will advance Pd’s internal clock by

64/44100 s or approximately 1.45 ms.

After a call to the process method, the application has to

poll Pd for symbols, messages, floats, bangs, arrays and

MIDI events, carry on its own processing cycles, and send

its own symbols, messages, floats, bangs, arrays and MIDI

events to the patch.

The PdBase class offers the Java bindings for libpd, thread

synchronization and type conversion between Java and C.

With the methods implemented in this class, it is possible

to open patches, poll Pd for its current state, and process

Pd DSP ticks.

To receive data from Pd, the application has to register the

Pd symbols that it will listen to via the subscribe method in

PdBase. The PdDispatcher class implements one callback

function for each data type that Pd is able to send, and

when Pd is polled for messages via the pollPdMessage-

Queue method in PdBase, it calls the appropriate methods

of PdDispatcher for each data type that was sent to sub-

scribed symbols. Symbols can be subscribed and unsub-

scribed to at any moment.

Ensemble extends the PdDispatcher class, overriding the

callback methods to return encapsulated Pd data, which is

processed by the PdEventServer class. This Event Server

also parses messages received from Pd and encapsulates

data from Ensemble to the patch, providing another layer

in the access of the PdBase class, making future changes

to the protocol easier to implement.

4. THE PD-ENSEMBLE PROTOCOL

With the libpd Java bindings, it is possible to divert all re-

quests to any given agent reasoning (in Java) to a call to

libpd that causes a Pd patch to be executed, and to col-

lect any data produced by this patch back to the reason-

ing for further processing by Ensemble (through its actua-

tors, event servers, etc). In such a context the Java-written

reasoning is nothing more than a generic wrapper that re-

quires only a few parameter inputs (e.g. the Pd patch file-

name that contains the actual reasoning).

In order for this wrapper-reasoning to work, the Pd patch

has to adhere to a certain protocol, using specific Pd objects

and a well-defined syntax to gain access to the structures

contained in the agent’s representation in Ensemble. This

protocol should define Pd objects for accessing and modi-

fying memories corresponding to existing sensors and ac-

tuators and for retrieving and storing data in a knowledge

base, which are essential operations in the design of any

reasoning. Furthermore, this protocol should also specify

Pd objects to create and modify agents and components,

and also to define characteristics of the virtual world that

were formerly configured in an XML initialization file.

This protocol, defined in the sequel, should aim at com-

plete transparency (from the user point-of-view) with re-

spect to inner workings of the Ensemble framework, that

will still be carried out by its Java kernel. In practical

terms, no knowledge of the Ensemble Java classes and

code should be required from the user of Ensemble through

this Pd Ensemble protocol. Ideally, the Pd Ensemble user

should not be even aware that any data is coming from or

going to the Ensemble Java kernel outside Pd.

4.1 Environment

Ensemble applications can be configured and initialized by

an XML file parsed by a loader class, where the user de-

fines the application’s components, such as Event Servers,

Worlds and its Laws, Musical Agents and their Sensors and

Actuators. The Ensemble-Pd interface allows these con-

figuration parameters to be defined by message arguments

sent to symbols that Ensemble subscribe to. These mes-

sages should be sent at the moment the patch is loaded by

Ensemble’s Pd instance.

Messages sent to the global symbol define Ensemble’s

clock, schedule and process modes; messages sent to the

environment symbol define the Environment Agent, World

and Laws; and messages sent to the add_agent symbol de-

fine Musical Agent names that will be added to the appli-

cation, and whose definition should be in subpatches inside

the configuration patch. Table 1 shows the Pd symbols and

objects used in the initialization, their arguments and us-

age.

Symbol/Object Arguments Usage

global

<clock_mode>

<process_mode>

<scheduler_threads>

Sets

execution

parameters

environment

<class>

<world>

<world_class>

[<world_law>]

Sets

environment

and world

parameters

add_agent <name>
Adds

an Agent

[r <agent>/start]

Receives

agent

startup bang

Table 1. Application Startup Symbols.

4.2 Sensors and Actuators

Every Musical Agent added to the Pd application has its

own subpatch, where its Reasoning, Actuators, Sensors,

Memories and Knowledge Base are defined and configured

via messages, which are sent to Ensemble symbols when

the framework is ready to start processing that Agent. This

is done to prevent Ensemble from losing the agent config-

uration messages, because at the moment of loading the

patch Ensemble has not yet received the agents’ names,

and so could not have subscribed to their symbols. Table 2

shows the Pd symbols and objects used in Sensor and Ac-

tuator creation and communication, their arguments and

usage.

Ensemble starts agent processing by sending (through libpd)

a bang to the symbol <agent>/start (see Table 1) which

will be received in the application’s patch by a Pd object

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1514 -

Symbol/Object Arguments Usage

add_actuator

<name>

<type>

[<scope>]

Adds a new Actuator

add_sensor

<name>

<type>

[<scope>]

Adds a new Sensor

remove_actuator <name> Removes an Actuator

remove_sensor <name> Removes a Sensor

[s actuator_name]
<data>

[<scope>]

Writes data

to actuator_name

[r sensor_name]
Receives data

from sensor_name

Table 2. Actuators and Sensors Symbols.

r <agent>/start

Messages in the patch connected to this object should con-

tain the names and parameters for the desired components

and Knowledge Base facts. Messages in the patch sent to

the symbol corresponding to the agent name are used to

create components; for instance sending a message to a

symbol <agent>with contents add_actuator or add_sensor

initialize (in Ensemble) the corresponding Sensors and Ac-

tuators, and also define the type of Event that this com-

ponent will handle; optionally this message can define a

scope, allowing for private communication between selected

actuators and sensors.

4.3 Knowledge Base

Adding facts to the Knowledge Base at agent startup time

is done by sending a message with the fact name and value

to the symbol new_fact. Facts can later be recovered by

sending messages to the object

read_fact <agent_name>

which receives a fact name in its inlet and returns the value

in its outlet (assuming the fact exists in the agent’s Knowl-

edge Base). Updating the fact in the agent’s Knowledge

Base is done via messages to the object

update_fact <agent_name>

that receives a fact name and new value in its inlet and up-

dates the Knowledge Base accordingly. In Table 3 are the

Pd symbols and objects used in creating, accessing, remov-

ing and updating a fact in the Agent’s Knowledge Base,

their arguments and usage.

4.4 Memories

In the same way, different types of Agent Memories can

be created and read from with messages to the symbols

new_memory and read_memory. To read from a mem-

ory, a message must specify a memory name and a time

value; when writing to a memory (e.g. an actuator’s mem-

ory), the value sent to the symbol write_memory is writ-

ten in the specified Memory at the current processing time.

Symbol/Object Arguments Usage

new_fact

<agent>

<name>

<value>

Adds a new Fact

update_fact

<agent>

<name>

<value>

Updates a

fact if it

exists

remove_fact name Removes a Fact

[read_fact]

<agent>

<name>

<value>

Reads a

Fact and

returns a value

Table 3. Knowledge Base Symbols.

Table 4 presents the Pd symbols and objects used in Mem-

ory creation, writing and reading, their arguments and us-

age.

Symbol/Object Arguments Usage

new_memory

<agent>

<name>

<type>

Adds a new Memory

write_memory

<agent>

<name>

<value>

Writes to a

Memory at

current time

read_memory

<agent>

<name>

<time>

Reads a

Memory and

returns a value

Table 4. Memory Symbols.

5. PD-ENSEMBLE EXAMPLES

A minimal Pd-Ensemble application should start by defin-

ing the internal clock and processing modes of Ensemble,

the environment agent and world, and how many agents of

a given class the application will instantiate. In a patch,

these parameters are defined by sending messages to the

symbols shown in Table 1. The patch in Figure 1 shows

these messages loaded at startup time and a subpatch cor-

responding to an agent.

Figure 1. Pd-Ensemble initialization patch

The agent reasoning is defined inside the subpatch, in this

case agent1, which will also define the agent components.

Figure 2 shows the agent1 patch, that adds one sensor and

one actuator of the type audio.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1515 -

Figure 2. Agent configuration and reasoning

The reasoning defined by this patch is also shown in Fig-

ure 2, and uses the abstraction in Figure 3 to process two

audio signals using an FM structure. These signals are re-

ceived from an audio sensor (immediate input), and from

reading an audio memory corresponding to the same sen-

sor with a 10-second delay, using the Pd objects

sense˜

act˜

read_memory˜

shown in the patch. The Pd abstractions for these objects

are shown in Figures 4, 5 and 6, and serve as wrappers of

the Pd-Ensemble Protocol.

Figure 3. Signal processing Pd abstraction used in this

example

Figure 4. Pd abstraction for writing a signal to an actuator

Figure 5. Pd abstraction for receiving a signal from an

audio sensor

Figure 6. Pd abstraction for reading from memories of an

agent

For a given Ensemble configuration Pd patch, one can

run Ensemble with that patch by passing the patch name

to the Loader class, as in ensemble.tools.Loader

-patch patch_name, or in a full command-line ex-

ample:

$ java -cp ../lib/libpd.jar: \

../lib/ensemble_apps.jar: \

../lib/ensemble.jar: \

../lib/NetUtil.jar: \

../lib/jade.jar \

ensemble.tools.Loader -patch patch_name

6. DISCUSSION AND CONCLUSIONS

The protocol here defined enables the creation of multia-

gent musical applications in Ensemble by users with knowl-

edge of Pure Data programming. Objects and messages in

Pd have been presented which allows a Pd patch to de-

fine several characteristics of the virtual world, including

topological and physical aspects, to create agents and com-

ponents, such as sensors and actuators, and to manipulate

such components, allowing the behaviour of agents to be

entirely defined via Pd patches.

The Ensemble Pd interface does not contemplate several

higher-level structures that affect the virtual environment

as a whole. For instance, with Java an Ensemble user is

able to define new types of data for agent communication

that are not currently supported, along with the physical

laws that govern the distribution of such data among reg-

ular agents and the environment agent. The user can also

create (in Java) alternatives to existing laws, such as arbi-

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1516 -

trary sound propagation rules limited only by one’s imagi-

nation; for instance, sounds that accelerate away from each

sound source or boomerang-like sounds that bounce back

toward the source a while after being produced are eas-

ily defined in Java, but are still off-limits to a pure Pd-

Ensemble user.

These possibilities should become available to a Pd user

in one of two possible forms, which are the theme of future

work. Either the protocol here defined is enlarged in order

to accommodate all sorts of substitutions in the Ensem-

ble kernel (e.g. virtual world laws, environment policies)

for surrogate Pd patches, or the entire Ensemble kernel is

rewritten in C as a series of Pd externals.

Acknowledgments

Authors would like to thank the support of the Sonology

Research Nucleus (NuSom) of the University of São Paulo,

and PIBIC/CNPq project # 2013/1046.

7. REFERENCES

[1] P. M. Todd and G. M. Werner, “Frankensteinian meth-

ods for evolutionary music composition,” in Musical

Networks: Parallel Distributed Perception and Perfor-

mance, 1999, pp. 313–340.

[2] M. Spicer, “AALIVENET: an agent based distributed

interactive composition environment,” in International

Computer Music Conference, 2004, pp. 1–6.

[3] L. K. Ueda and F. Kon, “Andante: Composition and

performance with mobile musical agents,” in Proceed-

ings of the International Computer Music Conference,

2004, pp. 604–611.

[4] D. Murray-Rust, A. Smaill, and M. Edwards,

“MAMA: An architecture for interactive musical

agents,” in Proceeding of the 2006 conference on ECAI

2006: 17th European Conference on Artificial Intelli-

gence August 29–September 1, 2006, Riva del Garda,

Italy. IOS Press, 2006, pp. 36–40.

[5] D. Bisig, M. Neukom, and J. Flury, “Interactive Swarm

Orchestra-A Generic Programming Environment for

Swarm Based Computer Music,” in Proceedings of

the International Computer Music Conference. Belfast,

Ireland, 2008.

[6] L. F. Thomaz and M. Queiroz, “A framework for musi-

cal multiagent systems,” in Proceedings of the Sound

and Music Computing Conference, Porto, Portugal,

2009, pp. 213–218.

[7] I. Whalley, “Software agents in music and sound art

research / creative work: Current state and a possible

direction,” Organized Sound, vol. 14, no. 2, pp. 156–

167, 2009.

[8] L. F. Thomaz and M. Queiroz, “Ensemble: Implement-

ing a musical multiagent system framework,” in Pro-

ceedings of the Sound and Music Computing Confer-

ence, Padova, Italy, 2011, pp. 198–205.

[9] G. L. Ramalho, P. Y. Rolland, and J. G. Ganascia, “An

artificially intelligent jazz performer,” Journal of New

Music Research, vol. 28, no. 2, pp. 105–129, 1999.

[10] S. Dixon, “A lightweight multi-agent musical beat

tracking system,” in Proceedings of the Pacific Rim In-

ternational Conference on Artificial Intelligence, 2000,

pp. 778–788.

[11] J. McCormack, “Eden: An evolutionary sonic ecosys-

tem,” Advances in Artificial Life, pp. 133–142, 2001.

[12] P. Dahlstedt and M. Nordahl, “Living melodies: Co-

evolution of sonic communication,” Leonardo, vol. 34,

no. 3, pp. 243–248, 2001.

[13] E. R. Miranda, “Emergent sound repertoires in virtual

societies,” Computer Music Journal, vol. 26, no. 2, pp.

77–90, 2002.

[14] M. Gimenes, E. Miranda, and C. Johnson, “The de-

velopment of musical styles in a society of software

agents,” in Proceedings of the International Confer-

ence on Music Perception and Cognition, 2006.

[15] L. L. Costalonga, R. M. Vicari, and E. M. Miletto,

“Agent-based guitar performance simulation,” Journal

of the Brazilian Computer Society, vol. 14, pp. 19–29,

2008.

[16] P. A. Sampaio, G. Ramalho, and P. Tedesco, “Cin-

balada: a multiagent rhythm factory,” Journal of the

Brazilian Computer Society, vol. 14, pp. 31–49, 2008.

[17] P. Brinkmann, P. Kirn, R. Lawler, C. McCormick,

M. Roth, and H.-C. Steiner, “Embedding pure data

with libpd,” in Proc Pure Data Convention 2011, 2011.

[18] K. Jolly, “Usage of pd in spore and darkspore,” in Proc

Pure Data Convention 2011, 2011.

[19] S. Jorda, M. Kaltenbrunner, G. Geiger, and R. Bencina,

“The reactable*,” in Proceedings of the international

computer music conference (ICMC 2005), Barcelona,

Spain, 2005, pp. 579–582.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1517 -

