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ABSTRACT 

This paper presents an application and extension of the 

ml.* library, implementing machine learning (ML) mod-

els to facilitate “creative” interactions between musician 

and machine. The objective behind the work is to effectu-

ate a musical “virtual partner” capable of creation in a 

range of musical scenarios that encompass composition, 

improvisation, studio, and live concert performance. An 

overview of the piece, Flights, used to test the musical 

range of the application is given, followed by a descrip-

tion of the development rationale for the project. Its con-

tribution to the aesthetic quality of the human musical 

process is discussed. 

1. INTRODUCTION 

Machine learning algorithms of broad variety are firmly 

established in research that integrates them with musical 

functions and processes.  For example, algorithmic tools 

developed by Cope [1] explore musical counterpoint. 

Raphael articulates a system employing algorithms for 

musical accompaniment [2]. Melo, Drevert, and Wiggins 

[3] study machine learning processes for sound diffusion 

performance. George Lewis’ Voyager analyzes an impro-

visational performance and then generates responses in 

real-time [4]. .Weinberg and Driscoll [5] applied machine 

learning to Haile, a music robot designed for spontaneous 

acoustic musical performance through interaction with a 

human musician.  Triple Point, led by Pauline Oliveros, 

is a computer-acoustic group that employs FILTER, a 

real-time algorithmic improvising partner [6]. In light of 

this work, particularly in the improvisational, spontane-

ous compositional sphere, the authors present the ml.* 

application as a tool for real-time algorithmic musical 

collaboration.  Building on earlier work that utilized ml.* 

for harmonic and melodic content through the MIDI pro-

tocol [7], this effort employs algorithms to analyze ana-

log pitch and rhythmic material, and then generate the 

same audio sounds, now sampled, as sonic material for 

computer-composed, real-time responses. 

  The application is intended to satisfy the following 

criteria.   

1. Interfaces easily with non-technical musicians, re-

quiring a minimum of specific knowledge.   

2. Analyzes and outputs melody, harmony, rhythm, 

tempo, timbre and dynamics.  

3. Generates musically sophisticated and nuanced re-

sponses with minimal extra-musical manipulation by the 

user/musician.   

In a sense this work represents a step in the continu-

ing search to create an intelligent musical partner, capable 

of improvising and performing as a musical, expressive 

partner and equal in concert with human musicians.  

One of the particular problems of implementing such 

systems lies in the difficulty of integrating the mechanics 

of ML into the aesthetics of music [8]. In this work we 

developed a ML system that helps musicians augment 

their performance while minimizing additional cognitive 

load required to interact with the system. In turn, the in-

volvement of a human performer then helps guide the 

aesthetic relevance of the ML system. 

Flights (Deal, 2014) was composed for this project in 

mind. This approach gave insight into how closely artistic 

expectations can be matched by the chosen design. The 

ML interface was constructed by incorporating ml.*, the 

Machine Learning Toolkit for Max 5+ [7]. 

2. FLIGHTS 

Flights is a work that creates a dynamic musical envi-

ronment through the integration of rhythmic and harmon-

ic movement with a machine learning application. The 

structure is a series of delineated sections comprised of 

sets of interchangeable rhythmic structures (see figure 1) 

and chord progressions (figure 2), fashioned so the per-

former has ample freedom to engage and interact with the 

output of the ml application. The performers work their 

way through the harmonic material by interspersing vir-

tuosic passages with space for the ml application to fill 

out.  Any treatment of the work is feasible, and extends to 

an additional performer on the score and also the imple-

mentation of live digital signal processing and media ex-

ploitation. If performed as an instrumental duet, each 

player should play soloistically yet in proximity and aes-

thetic relationship to the other, and both should send their 

musical input the same ml application (acting as a third 
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performer). Grouping instrumentalists with previously 

mentioned elements, ml and live processing, shapes the 

aural nature of a performance space through the arrange-

ment of performers and loudspeakers. While each section 

of the work is performed soloistically by the instrumen-

talist(s), ml* is capturing harmonic and rhythmic data, 

categorizing it, then outputting a derived response, yield-

ing cascades of re-supposed harmonic, rhythmic, and 

melissmatic material that emanates throughout the space, 

resulting in a series of dynamic musical episodes. Flight 

is designed for performance in either a single physical 

space, or distributed telematically between multiple sites 

over the Internet. The open score suggests instruments 

that include percussion, piano, harp, strings, guitars, 

woodwinds, prepared/augmented instruments, controllers, 

and computer interactivity. Ml* is introduced into the 

design of the work via the structural shape of the compo-

sition, in which sections consist of virtuosic passages 

followed by large rests, which in turn create room for 

liberal amounts of interactivity. The success of a perfor-

mance lies in the timing, placement, and juxtaposition of 

virtual and live sound together with the interaction of 

instrumentalists and ml*. 

 

 

Figure 1: Rhythmic structures for guiding improvisation 

in Flight. 
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Figure 2: Pitch set progressions for Flight. 

3. DESIGN 

3.1 Objectives 

The primary design goals are to create a system that can 

produce and interact with sufficient musical diversity and 

richness, yet require a minimum of extra-musical com-

munication. That is, the design intentionally avoids the 

use of non-musical signals or communication (such as 

button presses or a trigger pedal), instead aiming to re-

spond to the human participants in a manner analogous to 

other human performers, understanding musical gestures 

and signals in an attempt to derive the human’s intent. 

Ideally this will allow trained musicians to begin playing 

and interacting with the system, leveraging their musical 

experience and diminishing new, specific learning re-

quired to play with this computer system. 

A secondary goal for the design of the system is to 

portray aspects of creativity, encouraging expressive in-

teraction and musical production. Providing sufficient 

flexibility, diversity, and possibility of the generative 

musical content in order to appear creative is a complex 

task for deterministic systems. Indeed, systems relying on 

pre-set algorithms are confined by finite bounds and may 

never reach the subtle complexity of human expression. 

Stochastic processes are typically employed to expand 

these possibilities. While randomness may accidentally 

uncover new musical ideas and spark creativity and inter-

est in a human user, the system itself is wandering blind-

ly, just as likely to produce musical noise as it is to pro-

vide stimulating material. 

Machine Learning models provide a ready alternative 

in order to give the computational system some under-

standing and knowledge of the domain it is working in. 

These models are seeing increased use and exploration in 

computer music today as their potential begins to be ex-

plored in many directions [8, 9]. 

ML techniques fall broadly into two categories: su-

pervised–models that require a complete dataset in ad-

vance and typically involve careful tuning and selection 

by human users, and unsupervised–models that work in 

an adaptive fashion and provide minimal controls to the 

human user. The former category provides advantages 

when a full dataset is available, such as in processing a 

musical work for automated analysis, and when the user 

has specific advanced knowledge about the nature of the 

data (i.e. that the work employs a functional harmony 

model, for example.) The second category, unsupervised 

techniques, provides more exploratory approaches, 

wherein the models discover their own correlations and 

construct their own patterns to enable recall and pro-

cessing [9].  

A mixed model indicates the possibility of taking ad-

vantage of the strengths of both approaches. This “self-

supervised” notion [10] affords the system the opportuni-

ty to identify salient patterns in the data-stream (i.e. mu-

sical input data from a partner musician) and use this 

knowledge to train and re-train supervised models. This 

process is analogous to [8, 10] but further automates the 

system, giving it the ability to make suppositions about 

the musician’s intent and encode complex and varied 

relationships. 

3.2 Design 

The system consists, at a high level, of the elements 

shown in Figure 3. After audio from the human partner is 

digitized it passes through a feature encoder/extractor to 

provide relevant information for analysis. This feature 
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data is used as a look-up query ‘word’ to find the closest 

match in the system’s memory. This match is then output 

to a decision module that uses the identified word to in-

form musical playback. Working in parallel, a self-

organizing map is used to extract closely related ‘words,’ 

enabling a controllable range of responses. 

Memory'

Encoder'

Decision'

Playback'

Audio'Input'

Long;Term'

Adap=ve'

Audio'Output'

 
Figure 3: System diagram for Flight computational agent. 

3.2.1 Encoder 

In order to be ultimately flexible the system’s audio fea-

ture extraction must capture input with sufficient speci-

ficity, yet in a form general enough to allow a diversity of 

instruments, play styles, and musical genres to be charac-

terized adequately. Towards this end the encoding relies 

on a “chroma” analyser [11]. This reduction bins all the 

analysed frequencies (from a standard FFT) according to 

the 12 chromatic pitches of typical western just tuning. 

Thus all frequencies that are in an octave relationship 

where C is in bin 0, all C#s are in bin 1, etc. This gives a 

12 element vector characterizing the harmonic content of 

a given sample window. 

In addition to the chroma features, the system appends 

measures of brightness, noisiness, and loudness [12]. 

These are based on perceptual models attempting to cap-

ture salient aspects of the input sound. 

The system stores all inputs in an uncompressed data-

base of audio files, along with the analysed feature vec-

tors associated with the audio. Analysis can be set to oc-

cur at any rate lower than 10hz (an upper limitation of the 

chroma implementation employed). Features are typically 

extracted using overlapping windows, effectively dou-

bling or quadrupling the feature vector rate. Testing typi-

cally employed a two-fold window at 1hz, producing a 

feature vector every 500ms. 

 

3.2.2 Memory 

The memory of the system comprises two parts, a fully 

lossless ‘long-term’ memory, retaining all audio inputs 

and analysed features, and an adaptive ‘short-term’ 

memory. The size of the long-term database, after opera-

tion for any practical amount of time, is not insignificant 

and an efficient sort and search algorithm is required for 

real-time performance. This design uses a k-d tree model 

implemented as a Max external, extending the ml.* li-

brary. 

The k-d tree [13] is a space partitioning data structure 

for organizing points in a k-dimensions. The k-d tree is 

particularly useful in retrieval and searches involving 

multidimensional search keys, as in the present case. 

Here, each feature is one dimension in the data space and 

the k-d tree serves as a sorting algorithm providing effi-

cient nearest neighbour search and retrieval (with a per-

formance of O(log n)). 

Training of the k-d tree can occur at any point but typ-

ically takes place at session boundaries, i.e. when the user 

has provided sufficient new audio to require re-training. 

Retraining operations perform on the order of millisec-

onds, however the restructuring of the data can result in 

new tendencies in the system (i.e. apparent proclivities to 

make certain musical selections as a result of the new tree 

structure), and seems more easily accepted by the musi-

cian between play sessions, rather than in mid-

performance. 

During performance every feature vector is used as a 

search query into the k-d tree to locate the closest trained 

exemplar of that vector. This provides the system with a 

core function: the ability to match the human as closely 

as possible and play in a unison fashion with them. 

However, this ability to mimic on its own is highly re-

strictive and limited. To enhance the decision making 

aspects and apparent creativity of the system an adaptive 

short-term memory is incorporated, employing a machine 

learning model, a self-organizing map, to allow the anal-

ysis and rapid recollection of relationships between fea-

ture sets. 

The self-organizing map (SOM) [10, 14] provides un-

supervised clustering and classification, mapping high-

dimensional input data onto a two-dimensional output 

space, preserving the topological relationships between 

the input data items as faithfully as possible. The primary 

strength of the SOM is its fundamentally visual meta-

phor, translating higher dimensional data into an easily 

portrayed map. In other words, the SOM produces a pro-

jection of the input data space onto a two-dimensional 

map such that proximity on the map parallels some sort 

of similarity (or proximity) in the source data space. It is 

a computationally cheap model, and arguably mimics 

human cognitive models leading to results that parallel 

human perception and decisions at a basic level. 

At its core the SOM is a neural network lattice of 

nodes connected in a two-dimensional configuration (alt-

hough higher dimensional arrangements are possible) in 

which each node represents a possible category in the 

input space. The SOM may also be considered a nonline-

ar generalization of principle component analysis over 

which the SOM arguably provides many advantages [15]. 

In this system the SOM is presented with inputs, and a 

search is performed to locate the most similar (i.e. clos-

est, using a Euclidian distance measure) node in the map. 

Learning is performed continuously, adapting the win-

ning node and its neighbors to more appropriately repre-

sent the new inputs. The learning is calculated as a grad-

ual reduction of the distance between the input and the 

matching map node (and the amount of change is used as 

a control signal for the Decision module, below). The 

result of adapting nodes in a gradually decreasing neigh-

borhood around the winner provides an encoding of rela-

tionships, smoothing and interpolating between disparate 

inputs. 
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This interpolation is leveraged in this system to locate 

feature areas at a given “SOM distance” from any speci-

fied input. In operation this means the system (either the 

user or a process in the “decision” module) can specify a 

relationship distance and the SOM-based memory will 

return one or many feature vectors that specified distance 

away from the most recent search vector (typically the 

most recent input vector). The relationship distance is 

used as the magnitude of a vector projected onto the 

SOM, originating at the winning node of the SOM 

search. The orientation of the vector is currently seeded 

randomly, although this is seen as a weak point of the 

design. The node indicated by the termination of the vec-

tor on the SOM surface is sent to the decision module. 

This “relationship distance” search allows the system 

to control the degree of relatedness between output and 

input in a continuous fashion. The degrees are relative 

within feature space, and susceptible to idiosyncrasies of 

the SOM model, but are arguably consistent and trans-

posable across the SOM space. That is, a magnitude of 0 

(for the relationship distance) will return the closest 

match to the input, while a 1 will be slightly distant, and a 

5 will be much more distantly related. Additionally, this 

will have a similar result for any search input, anywhere 

on the SOM. 

 

3.2.3 Decision 

The Decision module evaluates the results of the memory 

bank look-ups and controls the playback module. Funda-

mentally, the decision module is moving closer and fur-

ther away from mimicking, or playing in unison with the 

human partner. 

This decision process is informed directly by the 

amount of learning or adaptation the SOM is undergoing 

during performance. As previously noted, with every 

input the SOM finds the best match and uses that input to 

retrain parts of the network, reducing the distance (in 

feature space) between the winning node, its neighbours 

and the new input. The difference between the retrained 

state and the previous state is summed and used as a 

measure of “learning.” 

Based on theories of intrinsic motivation [16, 17], this 

learning value over time is considered to be analogous to 

the Kolmogorov complexity [18], or information density 

of the input stream. 

Control in the decision module is affected by setting a 

target “learning rate” which the system is trying to main-

tain. If input is sufficiently complex to produce a higher 

learning rate the system will steer towards unison with 

the human, allowing the musician to guide the musical 

movement. However, if the input stream is predictable by 

the system (i.e. not enough learning occurs), the decision 

module increases its divergence from the input, seeking 

more complexity and to produce novel musical move-

ment. This later case is particularly notable when the mu-

sician is silent, causing the system to gradually explore 

further and further until the human provides new, stimu-

lating input. 

 

 

 

3.2.4 Playback 

The system’s output module comprises a 4-voiced syn-

thesis engine employing audio file playback. In this way 

all of the sounds the system can produce are a compre-

hensive set of all sounds the system has heard. The play-

back voices are guided by the decision module, which 

provides a target feature vector that the playback module 

attempts to match. This is accomplished by searching in 

the k-d tree for the closest known match to the proposed 

feature vector. The corresponding location in the audio 

database is loaded and used for playback. The four voices 

are employed to ensure clean crossfading between differ-

ent files and when changes would otherwise produce un-

desirable audio artifacts. 

4. DEVELOPMENT 

The system was implemented in Max, due to the availa-

bility of the ml.* library. System requirements were pro-

duced and evolved over many sessions, as the potentials 

of the components became clear. An original implemen-

tation of the k-d-tree sort and search was developed as a 

Max external for this project, and it is being released 

freely for creative use along with this text. 

Development took place in an iterative process with the 

authors using musical material as a research instrument 

into the possibilities and capabilities of the system. 

5. FUTURE WORK 

Future Flights efforts with ML will include expanding on 

the ability of the system to create sonic variety by encod-

ing other musical features, such as rhythm. Given the 

openness of the score as it relates to instrument/voice 

selection, many different versions of the work could cre-

ate a large range of sonic material suitable for manipula-

tion in a variety of performance scenarios.  

When implementing the variations, aesthetic consid-

erations stem from the arrangement of performed materi-

al by artists and the ML system. Audiences classify dif-

ferent musical features unequally, so the more abstract 

implementations of the effect can present difficulties 

when conveying the intended meaning.  This will remain 

a problematic factor unless a clear method of articulating 

the ML voice, or sound is established in a performance 

context.  More performance research and rehearsal is 

needed to establish best practices for this type of aesthetic 

communication.   

Additionally, over time, the methodology employed in 

this work implies that the assembly/rehearsal process will 

also draw inspiration from the mechanics of the ML sys-

tem. The performance instructions could then be 

adapted/expanded to explore additional musical ideas 

allowed by the capabilities of the effect. 

6. CONCLUSIONS 

ML algorithms provide a way to add variation to static 

deterministic systems, increasing computational ap-

proaches to creative expression. Challenges encountered 

while following these approaches include the establish-
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ment of logical connections between the output of the 

system and the musical context, and the controllability of 

the system. Further efforts in broadening the pallet of 

options for the ML system, combined with more rehears-

al/exploratory hours with live musicians performing the 

variations will yield a broader range of musical possibili-

ties. Solutions to these issues shape the aesthetic outcome 

for the whole performance, as one issue affects the per-

ceived integration of the effect by the audience, while the 

other affects the interaction between system and perform-

er. 
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