
ImmLib - A new library for immersive spatial composition

Miguel Cerdeira Negrão

Queen’s University Belfast, Sonic Arts Research Centre

Cloreen Park Belfast, BT7 1NN, Northern Ireland

miguel.negrao@friendlyvirus.org

ABSTRACT

ImmLib is a new software library for spatial composi-

tion with grid-based loudspeaker systems in the context

of computer sound synthesis and audio processing which

places emphasis on immersiveness and a global approach

to space. It implements techniques for dealing with mul-

tiple decorrelated, but perceptually similar, sound streams

spatialized at different locations in space with the aim of

creating an expanded, broad or diffuse sound source with

interesting musical spatial properties. The tool, implemen-

ted in SuperCollider, automates the process of creating de-

correlated streams from a synthesis definition and provides

mechanisms to create and control spatial patterns in a vir-

tual surface by modulating synthesis parameters of the sound

processes using different (but coherent) signals for each of

the running instances. The main abstraction is the param-

eter field which defines ways to control the spatial patterns

across space based on mathematical functions defined on

a surface. We present here motivation for the library, the

general algorithm and abstractions and a brief overview of

the implementation, syntax and empirical evaluation.

1. INTRODUCTION

There is a rich history in computer music of using spa-

tialization technologies as tools serving a compositional

idea [1]. Common spatial compositional techniques in-

clude using trajectories, serializing the location parame-

ter, diffusion, simulation of acoustics, resonating spaces

or using sounds that are evocative of specific physical lo-

cations [2]. Different algorithms have been implemented

to place sounds in space (VBAP, Ambisonics, WFS, etc),

usually under the form of a single point source (or plane

wave) and different approaches have been taken regarding

how to use those tools in the compositional process. Such

spatialization technologies have both been used to contrast

a relatively small amount of sources by using clear and

well defined trajectories and to create rich spatial textures

composed of many micro events or streams with different

positions and movements that fuse into a bigger dynamic

sound source. There are still few tools to deal with such

spatial textures, and the ones that exist are usually tied to a

Copyright: c©2014 Miguel Cerdeira Negrão et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

single synthesis/processing technique (granular spatializa-

tion, spectral spatialization, etc.).

In recent years it has become more commonplace to have

multi-loudspeaker setups available when presenting com-

puter music. These setups range from 4 channels at hor-

izontal level, through domes and spheres, to Wave Field

Synthesis using tens or hundreds of individual speakers.

A number of spatialization technologies for virtual posi-

tioning of sound sources (usually point sources) have been

implemented in common software environments for real-

time synthesis and processing (Max/MSP, SuperCollider,

Csound) and digital audio workstations. The most popular

are Ambisonics [3, 4, 5], Vector Based Panning (VBAP) [6,

7] and Wave Field Synthesis [8, 9, 10].

Composers who have wished to work with more envelop-

ing sources or with sound objects created out of many in-

dividual “particles” or streams have resorted to different

strategies to create broader or more diffuse sound sources,

usually using one of the techniques previously mentioned

for the actual panning. Some of the most relevant such

strategies are Spatial Swarm Granulation [11], Spectral Spa-

tialization [12], Decorrelation, [13, 14], Deduplication with

band-pass filters, pitch-shifting or delays [15], Spatio-Ope-

rational Spectral Synthesis [16] and Image Based Spatial-

ization [17].

There are also several examples of sound works, some

computer related and others wholly acoustic, where several

similar sounding sound streams were spatialized (or just

placed) at different locations and manipulated in order to

create coherent spatial patterns. Notable examples are Ter-

retektorh and Nomos Gamma (Iannis Xenakis, 1966 and

1967-1968), SoundBits (Robin Minard, 2002, 576 chan-

nels of 1-bit audio, 576 piezo speakers, computer-controlled

spatialization [18], Pneumatic sound field (Edwin van der

Heide, 2006, 42 pneumatic valves, computer-controlled spa-

tialization [19]), Untitled Sound Objects (Zimoun and Pe

Lang, 2008, 250 prepared electro hub magnets in wooden

space), Signe (Steve Heimbecker, 2008, Turbulence Sound

Matrix system, 64-channels, computer-controlled spatial-

ization [20]), Coincidence Engine Two (“The User”, Em-

manuel Madan and Thomas McIntosh, 2008, 96 modified

clocks, custom electronics and software [21]), Spaced Im-

ages with Noise and Lines (Eric Lyon, 2011, 8-channel

composition [17]).

ImmLib is a new software tool being developed with the

goal of simplifying the work flow when dealing with spa-

tial textures by allowing many types of spatial patterns to

be created through high level control of the parameters of

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 815 -

mailto:miguel.negrao@friendlyvirus.org
http://creativecommons.org/licenses/by/3.0/

any sound synthesis or audio processing algorithm (sound

process).

2. IMMLIB

ImmLib implements a set of spatial composition techniques.

The library presents an environment with the basic tools

for working with multiple copies of the same sound pro-

cess spatialized at different points in space, allowing users

to focus on how the sound processes evolve and the spa-

tial patterns used, relieving them of the tedious task of set-

ting up the multiple streams and connections. The sys-

tem enables setting up rules for determining the evolution

of the spatial relationship of the same parameter in multi-

ple copies of the same sound process spatialized at mul-

tiple locations by defining parameter fields. As a high

level framework for spatial composition the system can use

different spatialization algorithms, although currently only

VBAP and direct speaker addressing is implemented.

Spatial patterns in this context are taken to mean the sug-

gested movement or spatial impression that is perceived

when one hears a complex sound source composed of many

individual elements spread in space. The contributions

from each source are received by the listener and often (but

not always) fuse into one single complex percept. Depend-

ing on the spectral and temporal relation between the sonic

output of each source they can fuse perceptually into one

spatially diffuse sound object, create a texture where indi-

vidual components can still be somewhat detected but are

nevertheless perceived as part of the whole, or be perceived

as entirely separate entities. This spatial impression can be

indeterminate such as with a sense of ”space”, ”depth” or

”volume”, with it’s features only vaguely perceivable and

difficult to separate, or be very well defined such as with

precise periodic movements (”waves”, ”sweeps”, etc.) with

quantifiable features (frequency, width, speed, regularity).

In any case, it’s not easy to find terms to describe such pat-

terns and, as often happens, one has to borrow terms from

the visual domain or mathematics.

2.1 Model and Implementation

ImmLib is implemented as a set of classes for the Super-

Collider language [22] and auxiliary programs. It is im-

plemented on top of the UnitLib library [23]. Unit Lib

allows synthesis definitions (Udef class) to be instantiated

into units (U class) which can be easily send audio to each

other via chains (UChain class). A score (UScore class)

can be built by placing chains on a timeline. Listing 1

shows UnitLib’s syntax.

Listing 1. UnitLib usage example.
var x = UChain(

[\whiteNoise, [\amp, 0.5]],

\stereoOutput

)

.startTime_(10)

.duration_(60);

UScore(x).prepareAndStart

ImmLib is designed to work with two-dimensional grids

of loudspeakers covering spaces such as domes, spheres or

single walls. It spatializes a sound process, defined in a

Udef, by creating multiple instances of the sound process

and spatializing them at points isotropically distributed on

an imaginary surface, conceptualized as hovering over the

loudspeaker grid. The speaker system and spatialization

method being used with the library must be able to place

a virtual source on this virtual surface in order for the li-

brary to work correctly (e.g. a full sphere requires speak-

ers above and below the floor level). The spatial patterns

are created by associating mathematical functions defined

on this conceptual surface, which we call parameter fields,

with a parameter of the sound process.

The surface can be modeled mathematically by a two-

dimensional Riemannian manifold which has associated a

set of coordinate maps. A coordinate map is an home-

omorphism which sends a portion of a plane into three-

dimensional space (f : A ⊂ R
2 → R

3). It’s inverse

function (f−1 : B ⊂ R
3 → R

2) goes from the surface

embedded in three-dimensional space back to the coordi-

nate space. Coordinate map’s are useful in this context be-

cause to define a function f on the surface we only need to

define the function on the flat two-dimensional coordinate

space since the coordinate map g will extend the function

to the surface in three-dimensional space through compo-

sition f ′ = g ◦ f . It’s usually easier to define functions

on the two dimensional coordinate space then on the three-

dimensional space where the surface is embedded, and for

this reason in ImmLib parameter fields are functions of u,

v, the two spatial coordinates and t, time. Having a way to

measure distances on the surface is useful for writing inter-

esting functions. Given a connected Riemannian manifold

the distance between two points can be determined by the

arclength of a minimizing geodesic connecting them. The

distance function d defined on the surface can likewise be

pulled back onto the coordinate space d′ = g−1 ◦ d.

A surface is implemented in ImmLib by the PSurface

class which contains an instance of PRiemannianManifold.

To create a PRiemannianManifold one must supply a coor-

dinate map and it’s inverse, a distance function defined on

the coordinate space (d : R2 → R), the domain of the coor-

dinate map (A ⊂ R
2), the maximum distance between two

points on that domain and whether the surface is closed

or not. A PSurface also contains an array with points on

the coordinate space which determine the number and lo-

cation of the point sources to use when spatializing each

copy of the sound process. Currently the available sur-

faces are PSphere(n) which generates n points on the unit

sphere using a simple algorithm from computational ge-

ometry [24], PGeodesicSphere(n) which generates a set of

points by successive projections of an icosahedron onto the

unit sphere and PPlane(origin, dx, dy, n, m) which creates

a parallelogram rectangle in 3D space.

Given a Udef, a PSurface with n points and and an asso-

ciative array of m synthesis parameter names (e.g. ’freq’)

to definitions of control signals, the library will create n

units and spatialize each one at the nth point of the PSur-

face. For each parameter in the associative array n con-

trol signals are created and connected to the corresponding

units.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 816 -

The control signals are generated either from the Super-

Collider language by sending OSC messages to the server

at a regular interval (usually 0.1s) or by creating auxiliary

audio process in the server and connecting them into the

corresponding parameters of each unit. In either case the

control signals are generated from parameter fields.

2.2 Parameter Fields

Parameter Fields (pfields) model spatial patterns using real

valued functions of time defined on the coordinate space of

the surface:

f : A ⊂ R
2
× R → R.

Given a parameter field pf to be assigned to synthesis

parameter p, it’s value at time t and position w = (u, v),

x = pf(u, v, t),

represents the numeric value of p at position w at time t.

Ideally, the sound coming from that direction should sound

as if the parameter of synthesis has the value x. In the

simplest case where a parameter field is directly connected

to a parameter of synthesis (no further manipulation of the

output of the parameter field), given unit un spatialized

at pn = (un, vn) the control signal for parameter m is

generated by animating the function

fn(t) = pf(un, vn, t).

Since a parameter field is defined in terms of coordinates

(u, v) in the coordinate space it’s possible to apply the

same field to different surfaces by just composing it with

different coordinate maps, this allows for the definition of

pfields in ImmLib to be independent of the surface being

used such that if a score is created with a certain surface in

mind, it will be relatively easy to convert it to a different

surface.

In general parameter fields can themselves have parame-

ters, in which case the control signal for point n becomes

fn(t) = pf(un, vn, t, c1, c2, ...).

The parameters can be modulated by time dependent func-

tions

fn(t) = pf(un, vn, t, c1(t), c2(t), ...)

or by other parameter fields

fn(t) = pf
1
(un, vn, t, pf2(un, vn, t, d1(t), ...), c2(t), ...).

If the mathematical function used for a pfield is contin-

uous on the spatial variables 1 , which is not uncommon

for functions given by simple formulas, then the relation-

ship between the values of the synthesis parameter being

modulated at two points close together is not arbitrary: the

closer the points the closer the values of the parameter.

This gives rise to spacial coherency which contributes to

the creation of spatial patterns. This is perhaps the most

important property of parameter fields.

1 For all t0, (x, y) 7→ f(u, v, t0) is continuous.

Let us go over a concrete example. Consider the pfield

defined by

pf(u, v, t, u0, v0, c) =

{

0 if dist((u, v), (u0, v0)) > c

1 if dist((u, v), (u0, v0)) ≤ c
(1)

where p0 = (u0, v0) is a fixed point on the surface. This

pfield doesn’t depend on time, only on p0 and c. It acts

as a ”spotlight”: any points closer to p0 then c are lighted

(value 1) and all the other points are in the dark (value

0). Figure 1 shows a plot of this pfield, using the built in

plotter (PSmoothSurface and PGridPlot classes) which can

animate a real-time visualization of the field and figure 2

shows the positions of the virtual sources. Listing 2 shows

the ImmLib code for creating the field defined in equation

1. First a Udef is created with one white noise generator

passing through a low pass filter, with controls for ampli-

tude and filter frequency, then the ”spotlight” pfield is de-

fined using a function and connected to the freq param-

eter using an ImmDef. The ImmDef is given specs used

to create a GUI with sliders for real-time control of u0, v0,

and c. Finally a chain is created with one unit and associ-

ated ImmDef and added to a score.

Listing 2. PField example
(

Udef(\filteredNoise, {

arg freq = 440, amp = 0;

var noise = WhiteNoise.ar;

var in = UIn.ar(0,1);

var out = BLowPass.ar(in, freq.clip

(20,20000).lag(1), 1);

UOut.ar(0, out * amp)

})

.setSpec(\freq, \freq.asSpec)

)

(

var m = 40;

//surface definition

var surface = PSphere(m);

var distFunc = surface.distFunc;

var maxDist = surface.maxDist;

//pfield definition

var pf = PField({

arg u, v, t, u0=0.0, v0=0.0, c=0.0;

var x = distFunc.(u, v, u0, v0)/maxDist;

if(x < c){ 1 }{ 0 }

});

//connect pfield to freq param.

var def = ImmDef({

//timer and sliders event streams

arg t, u0, v0, c;

var out = pf.(t, u0, v0, c);

//scale between 100Hz and 3000Hz

var out2 = out.linlin(0.0, 1.0,100,3000);

(freq: UArg(out2))

}, surface, 0.1,[

//specs for sliders

\u0, \azimuth,

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 817 -

\v0, \elevation,

\c, [0,1.0]

]);

//setup chain and score

var mod = ImmMod(def, [\c, 0.5]);

var chain = ImmUChain(

surface, 0, 1, inf, true,

[\filteredNoise, [\amp,0.1], mod];

).fadeIn_(1).fadeOut_(1);

var score = ImmUScore(surface, chain);

score.gui

)

Figure 1. Parameter field ”spotlight” plotted with

(u0, v0) = (0, 0), c = 0, c =
1

4
, c =

1

2
and (u0, v0) =

(0,
π

2
), c =

1

2

Figure 2. Positions of the virtual sources for PSphere(40)

Listening to this example on a spherical setup with speak-

ers above and below the floor level, with c = 0 one would

hear an enveloping cloud of low passed noise coming from

all directions. Each of the 40 virtual sources is playing

a decorrelated noise signal which contributes to the feel-

ing of being enveloped. Increasing the c parameter from

0 to 1, one would hear the sound in the frontal direction

start to become brighter, this brighter region would start

to expand symmetrically until finally occupying the whole

sphere. The lag on the freq control ensures a smoother

transition between the two frequency values.

2.3 Functional Reactive Programming

The evaluation and animation of pfields is done in sclang 2

using an implementation for SuperCollider of Functional

Reactive Programming (FRP) [25, 26] part oftechniques

FPLib [27]. This allows for the animated pfields to easily

interact with other event streams 3 such as from graphical

2 The SuperCollider language interpreter.
3 Classic FRP has two main abstractions Event Streams (discrete) and

Signals (continuous). In ImmLib we use mainly Signals, nevertheless we

user interfaces, MIDI or Open Sound Control (OSC) mes-

sages. Time is represented by an event stream of floats car-

rying the elapsed time in seconds and updated periodically

by a timer. A PField is evaluated using the mandatory time

event stream, together with optional event streams for ad-

ditional parameters and returns another event stream carry-

ing an array with the result of the evaluation of the function

at each of the points of the PSurface. The returned event

stream can be further manipulated before being associated

with the synthesis parameters using any of the combinators

of FRP such as fmap (processing values), accum (storing

state), apply (applicative functor interface, for combin-

ing streams) or switch (dynamic event switching) 4 . For

instance two evaluated PFields can easily be multiplied:

//evaluate field 1

var a = pf1.(t)

//evaluate field 2

var b = pf2.(t)

//multiply streams

//applicative syntax

{ arg x,y; x*y} <%> a <*> b

//lift syntax

{ arg x,y; x*y}.lift.(a,b)

//using polymorphism

a * b

Mathematical operators can also be used directly on event

streams through polymorphism, but this is expensive as it

creates one thunk per operation.

The switchInto combinator allows changing the stream

currently associated with a synthesis parameter dynami-

cally, when some other stream produces an event. This

allows extending the system to use not just pure mathemat-

ical functions but also algorithmic definitions which react

to events in real-time. It also allows for efficient imple-

mentation of functions which are piece-wise on the time

parameter. Listing 3 shows an example where every time a

slider moves from it’s two values, 0 or 1, the result stream

switches between using pf1 or pf2.

Listing 3. Dynamic event switching
var def = ImmDef({

arg t, slider1;

var out = slider1.switchInto{ |v|

if(v==0){pf1.(t)}{pf2.(t)}

};

(amp: USpecArg(out))

}, surface, 0.1,[

//specs for sliders

\slider1, ControlSpec(0,1,step:1)

]);

Event streams can also be used to entirely bypass the

pfield mechanism, creating the final values directly. This

was used to prototype and experiment with continuous cel-

lular automata and reaction-diffusion systems which in-

stead of using pure mathematical functions are implemented

will continue to refer to event streams which should be clearer for a wider
audience.

4 In FPLib these are called collect, inject, <%> and
switchInto.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 818 -

through algorithms that update values of a cell of a grid

based on the values of neighboring cells.

2.4 Predefined Parameter Fields

The library comes supplied with a number of predefined

pfields, below we list some of them. Gradient, wave2D,

spotlight, expandContract and sphericalHarmonic are de-

fined directly using mathematical functions, continuous-

RandomSpotlight, randomHills and moveHills are defined

using FRP and the spotlight function.

• gradient(t, u0, v0, a, b) : A pfield defined by

pf(u, v, t, u0, v0, a, b) = a(1− x) + bx

where

x =
d((u, v), (u0, v0))

maxDist
and a, b ∈ [0, 1].

It goes linearly from value a at point (u0, v0) to value

b at points at the maximum distance from (u0, v0).
See Figure 3.

• wave2D(t, u0, v0, l, freq, g): A pfield defined by

pf(u, v, t, u0, v0, f, l) = g(lx+ ft)

where

x =
d((u, v), (u0, v0))

maxDist

It implements a wave traveling through a surface caused

by a point source at (u0, v0) emitting a signal given

by function g where the speed of propagation is pro-

portional to l. The speed of propagation controls the

spatial wavelength, i.e. the distance of two succes-

sive peaks on the surface for fixed t. See Figure 3.

• spotlight(t, u0, v0, c, d) : A pfield similar to equa-

tion 1. It grows symmetrically from a start point

until occupying all the surface. It returns 1 if the

distance between (u, v) to (u0, v0) is smaller then

c ∈ [0.1] and 0 otherwise. d ∈ [0, 1] controls the

wideness of the smoothing area when transitioning

from 0 to 1.

• expandContract(t, u0, v0, c) : A pfield defined by

pf(u, v, t, u0, v0, c) =
{

spotlight(u, v, t, u0, v0, 2c) : c ∈ [0, 0.5[
spotlight(u, v, t, u′

0
, v′

0
, 2(1− c)) : c ∈ [0.5, 1].

It expands symmetrically from a start point until oc-

cupying the entire surface and then shrinks into (u′
0
, v′

0
),

the antipodal point.

• sphericalHarmonic(m, l)(t, f) : A pfield defined by

the spherical harmonic function of degree l and order

−l ≤ m ≤ l. The spherical harmonic function is

multiplied with a sinusoidal function with frequency

f . See Figure 3.

• continousRandomSpotlight(t, numSecs, curve) : A

pfield that grows symmetrically from a start point

until occupying all the surface and then shrinks back

to the same point, it then randomly chooses another

point to grow from and repeats the procedure. It

takes numSecs to grow from and shrink back to the

chosen point.

• randomHills(t, numSecs, numHills, sizeA, sizeB, bump-

Size, heightA heightB) : Every numSecs seconds switches

into a new function. Each function is composed of

the sum of numHills ”spotlight” functions with cen-

ters at random points (the hills) each hill having a

random wideness in [sizeA, sizeB] and height in [heightA,

heightB]. The animation progressively cross-fades

from one set of hills to another in numSecs seconds.

• moveHills (t, numSecs, numHills, size, step) : numHills

”spotlight” functions are created with random cen-

ter locations and wideness given by size. On each

iteration of the timer (the time between iteration is

given by the delta parameter of ImmDef) the cen-

ter of each hill is moved in a random direction by a

distance given by step. This creates Brownian move-

ment of the center of the spotlight functions.

Figure 3. Plots of parameter fields gradient (wall con-

figuration), spherical harmonic and wave2DSin (spherical

configuration).

3. EMPIRICAL EVALUATION

The pfields created so far have been evaluated by the au-

thor in the Sonic Lab of the Sonic Arts Research Center of

Belfast Queens University. The lab has 4 rings of 8 speak-

ers at heights of 5.5m, 2.83m, 0m, and −4.6m with a total

of 32 speakers. This system allows placement of sounds

roughly in any direction, which suggests the use of a sphere

as surface for ImmLib. Each pfields was evaluated tak-

ing note of how different types of sound processes (noisy,

pitched, synthetic, file based, etc.) and different values of

the pfield parameters create different types of behaviors.

While this evaluation is ongoing we can already formu-

late some provisional observations.

Given that the sound process is entirely determined by the

user the final sonic result will in practice be the outcome of

the interaction between pfields and the parameters of syn-

thesis they control. When using the library one needs to

experiment with assignment to different synthesis parame-

ters as the results can be quite different depending on the

parameter chosen.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 819 -

Each instance of the mono sound process which is cre-

ated should be decorrelated [14] from the other instances.

If this is not the case, then the multiple streams will sound

identical and might be perceived as a single point source

due to the precedence effect. In practice this means that

either the sound process should include non-deterministic

unit generators (which SuperCollider automatically instan-

tiates with different random seeds) or in case all unit gener-

ators are deterministic the range used for the values should

be big enough for the resulting streams not to be corre-

lated. When using a (mono) sound file as source material,

it should either be sent through an included decorrelation

unit 5 , the reading start positions in the sound file should be

different for each point of the surface or further processing

should be applied taking into account what was just men-

tioned before. Using noise and impulse generators as main

sound source works quite well with the system since the

streams are completely uncorrelated at each point of the

surface.

Depending on the values of the parameter field, the type

of parameter it is attached to and the type of sound pro-

cess used there can be strong or weak agreement between

what the pfield looks like on the animated plot and what is

actually heard. When the pfield is moving the agreement

tends to be stronger with slow movements and break down

completely when speeds cause each stream to amplitude

modulate at frequencies close to 20Hz.

Amplitude is a special parameter, slightly different from

other parameters: assigning a pfield to the amplitude pa-

rameter causes the sound to be played at different times in

different areas of the surface, therefore we can make the

sound ”travel” through the surface. Traveling includes not

only going from point a to point b but also going from

nowhere to everywhere, bifurcating and other more com-

plex behaviors.

As an example of the observations made during this eval-

uation, we present part of the analysis of the wave2DSin

pfield assigned the to amplitude control of a white noise

generator.

With f = 0.2Hz and u0 = 0, v0 = 0 a slow rhythm is

created, as it takes 5 seconds for the wave to travel from

one side to the other of the room. Depending on the value

of l different effects are created:

1. l = 0 : There is no spatial movement, sound comes

from every direction.

2. l = 0.05 : The sound, appearing from the back,

quickly fills the room, stays in all the space for a

while, then exits quickly from the front going into

full silence. The filling of the space happens sym-

metrically along the back-front axis. One needs to

be attentive to detect that the sound is starting from

the back.

3. l = 0.2 It’s very clear that sound expands from the

back to the front. At no point does it fill the whole

space.

5 The use of the decorrelation unit does not significantly increase cpu
usage.

4. l = 0.3 : There is even less filling of the space, it’s

more clear where the sound is at each moment as if

it was a band or stripe. The loudness when the peak

crosses the center of the room is higher the previ-

ously. Occasionally it appears one can hear two dis-

tinct peaks of amplitude halfway through the move-

ment. Still goes to silence after each passage.

5. l = 1.2 : The peaks pass through the room without it

ever going to full silence. When one peak of ampli-

tude is arriving on the front one hears another peak

appearing again at the back.

Front to back and back to front movements (i.e. the same

movement after the listener has rotated 180 degrees) pro-

voke different reactions. Back to front seems to be more

intense, perhaps because the sensation that something is

behind oneself increases alertness.

Comparing the difference between white noise, white noise

modulated with a low frequency square wave and a ran-

dom impulse generator (where in all three the pfield was

assigned to the amplitude control) and fm synthesis (where

the pfield was assigned to the fm modulation index, i) it

was observed that simple white noise seems to make the

movement more clear when the movement is sideways (rel-

ative to the head) while modulated white noise seems to

be more clear when the movement is along the front-back

axis. The impulse generator creates a quite clear move-

ment as well. Fm creates a much more ambiguous move-

ment, although setting the range for i high enough makes

the movement definitely perceivable. The spatial sensation

created by modulating i is quite interesting, it’s subtle yet

paying close attention one can indeed track the movement

of the increase in energy of higher frequencies across the

room.

The library has some practical issues. As it is based on

the duplication of the same sound process n times, the cpu

load also increases n times when compared to a non-dupli-

cated process. Even on modern multi-processor and multi-

core computers 6 it’s fairly easy to consume all the avail-

able resources which places a limit on the complexity of a

composition. When testing a single sound process it was

possible to use a surface with up to 60 points on an 8-core

computer, but with a complex composition the maximum

number of points can only be a fraction of that. The default

evaluation strategy for pfields runs on sclang which is no-

tably slow and not multi-core aware, the number of pfield-

s/points that can be evaluated simultaneously is therefore

not very high. To address this issue, an alternative evalua-

tion strategy that runs on scsynth has been added although

it is limited to pfields that don’t use dynamic event switch-

ing and the syntax used is different. The learning curve of

the library is somewhat steep as users must first become

familiar with the syntax of both UnitLib and FPLib’s FRP

system before they can fully use ImmLib.

The library has been used by two composers at SARC as

part of a collaboration started in order to obtain feedback

and useful insight with one work making use of the library

already presented to the public.

6 UnitLib can take advantage of all the cores available by using n sc-
synth servers for n cores, although some restrictions apply.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 820 -

ImmLib will be made freely available under the GNU

General Public License.

4. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new library for spatial com-

position with grid-based loudspeaker systems. The frame-

work built around surfaces and functions on surfaces (p-

fields), the emphasis on spatial coherency across multiple

parallel control signals and the generality in regard both to

the synthesis/processing algorithms and the spatial func-

tions used distinguish this system from other spatialization

tools.

Future work will focus on adding more pfields to the li-

brary and adapting it to make use of other panning systems

(Ambisonics, binaural). Pfields could also be used for the

creation of clouds of events if interpreted as probability

distributions: the value of a pfield at a point would repre-

sent the probability that an event is created at that location.

The system could be extended to use 3D grids of speak-

ers (e.g. 5 x 5 x 5 with 2m spacing) by using volumes

instead of surfaces and using parameter fields defined in

3D space which would be functions of x,y,z,t instead of

u,v,t. The output for each point could be sent directly to

each speaker or Distance-Based Amplitude Panning could

be used[28]. Finally there is potential in exploring systems

such as reaction-diffusion due to the richness of behavior

that can be extracted from a comparatively small amount

of parameters.

Acknowledgments

This work was funded by the Portuguese Foundation for

Science and Technology (Fundação para a Ciência e a

Tecnologia).

5. REFERENCES

[1] J. Chowning, “Turenas: the realization of a dream,”

Proc. of the 17es Journées d’Informatique Musicale,

2011.

[2] M. A. Baalman, “Spatial composition techniques and

sound spatialisation technologies,” Organised Sound,

vol. 15, no. 03, pp. 209–218, 2010.

[3] M. A. Gerzon, “Periphony: With-height sound

reproduction,” Journal of the Audio Engineering

Society, vol. 21, no. 1, pp. 2–10, Feb. 1973.

[4] D. Jérôme, “Représentation de champs acoustiques,

application à la transmission et à la reproduction

de scènes sonores complexes dans un contexte

multimédia,” Ph.D. dissertation, Ph. D. Thesis,

University of Paris VI, France, 2000.

[5] J. C. Schacher and P. Kocher, “Ambisonics spatial-

ization tools for max/msp,” Omni, vol. 500, p. 1,

2006.

[6] V. Pulkki, “Virtual sound source positioning using

vector base amplitude panning,” Journal of the Audio

Engineering Society, vol. 45, no. 6, 1997.

[7] S. Wilson and J. Harrison, “Rethinking the BEAST:

Recent developments in multichannel composition at

birmingham ElectroAcoustic sound theatre,” Organ-

ised Sound, vol. 15, no. 03, p. 239–250, 2010.

[8] A. J. Berkhout, D. de Vries, and P. Vogel, “Acoustic

control by wave field synthesis,” The Journal of the

Acoustical Society of America, vol. 93, p. 2764, 1993.

[9] S. Spors, R. Rabenstein, and J. Ahrens, “The theory

of wave field synthesis revisited,” in 124th AES

Convention, 2008, p. 17–20.

[10] “GameOfLife - WFSCollider.” [Online]. Available:

https://github.com/GameOfLife/WFSCollider

[11] S. Wilson, “Spatial swarm granulation,” in Proceed-

ings of the International Computer Music Conference,

Belfast, N. Ireland, 2008.

[12] D. Kim-Boyle, “Spectral spatialization - an overview,”

in Proc. Int. Computer Music Conf, Belfast, 2008.

[13] H. Vaggione, “Composing musical spaces by means of

decorrelation of audio signals,” in Proceedings of the

DAFx Conference on Digital Audio Effects, 2001.

[14] G. S. Kendall, “The decorrelation of audio signals

and its impact on spatial imagery,” Computer Music

Journal, vol. 19, no. 4, pp. 71–87, Dec. 1995.

[15] R. McGee, “Sound element spatializer,” MS Thesis,

University of California, 2010.

[16] D. Topper, M. Burtner, and S. Serafin, “Spatio-

operational spectral (sos) synthesis,” in Proceedings of

the International Conference on Digital Audio Effects,

Hamburg, Germany, 2002.

[17] “Image-based spatialization,” in Proceedings of the

International Computer Music Conference, Ljubljana,

Slovenia, 2012, pp. 200–203.

[18] “Robin minard.” [Online]. Available: http:

//robinminard.com/minard.content.php?id=17&sh=0

[19] “Edwin van der heide - pneumatic sound field.”

[Online]. Available: http://www.evdh.net/pneumatic

sound field/

[20] “Signe.” [Online]. Available: http://www3.sympatico.

ca/qubeassm/Signe

[21] “Coincidence engine two.” [Online]. Available: http:

//www.undefine.ca/en/projects/coincidence-engines/

coincidence-engine-two-approximate-demarcator-of-

constellations-in-other-cosmos/?artist=24

[22] J. McCartney, “Rethinking the computer music

language: Super collider,” Computer Music Journal,

vol. 26, no. 4, pp. 61–68, Dec. 2002.

[23] “Unit-lib.” [Online]. Available: https://github.com/

GameOfLife/Unit-Lib

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 821 -

https://github.com/GameOfLife/WFSCollider
http://robinminard.com/minard.content.php?id=17&sh=0
http://robinminard.com/minard.content.php?id=17&sh=0
http://www.evdh.net/pneumatic_sound_field/
http://www.evdh.net/pneumatic_sound_field/
http://www3.sympatico.ca/qubeassm/Signe
http://www3.sympatico.ca/qubeassm/Signe
http://www.undefine.ca/en/projects/coincidence-engines/coincidence-engine-two-approximate-demarcator-of-constellations-in-other-cosmos/?artist=24
http://www.undefine.ca/en/projects/coincidence-engines/coincidence-engine-two-approximate-demarcator-of-constellations-in-other-cosmos/?artist=24
http://www.undefine.ca/en/projects/coincidence-engines/coincidence-engine-two-approximate-demarcator-of-constellations-in-other-cosmos/?artist=24
http://www.undefine.ca/en/projects/coincidence-engines/coincidence-engine-two-approximate-demarcator-of-constellations-in-other-cosmos/?artist=24
https://github.com/GameOfLife/Unit-Lib
https://github.com/GameOfLife/Unit-Lib

[24] R. Bauer, “Distribution of points on a sphere with

application to star catalogs,” Journal of Guidance and

Control, vol. 23, no. 1, 2000.

[25] C. Elliott and P. Hudak, “Functional reactive anima-

tion,” in ACM SIGPLAN Notices, vol. 32, 1997, p.

263–273.

[26] C. M. Elliott, “Push-pull functional reactive program-

ming,” in Proceedings of the 2nd ACM SIGPLAN

symposium on Haskell, 2009, p. 25–36.

[27] “FPLib.” [Online]. Available: https://github.com/

miguel-negrao/FPLib

[28] T. Lossius, P. Baltazar, and T. de La Hogue, “DBAP-

distance-based amplitude panning,” in Proc. Int. Com-

puter Music Conf, 2009, pp. 489–492.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 822 -

https://github.com/miguel-negrao/FPLib
https://github.com/miguel-negrao/FPLib

