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ABSTRACT 

This paper examines the correlation between musical 

dissonance and auditory roughness—the most significant 

factor of psychoacoustic dissonance—and the contribu-

tion of the latter to algorithmic composition. We designed 

an empirical study to assess how auditory roughness cor-

relates with human judgments of dissonance in natural 

musical stimuli on the sound object time scale. The re-

sults showed a statistically significant correlation be-

tween roughness and listeners’ judgments of dissonance 

for quasi-harmonic sounds. This paper concludes by pre-

senting two musical applications of auditory roughness in 

algorithmic composition, in particular to supervise the 

vertical recombination of sound objects in the software 

earGram. 

1. INTRODUCTION 

Composing can be seen as a decision-making process. 

Many choices have to be made during the creation of a 

musical piece from the macro down to the micro structur-

al levels on both the horizontal (e.g., melodic) and verti-

cal (e.g., harmony and melodic motive relationships) di-

mensions. Since the 1950s efforts have been made to un-

derstand and formalize organizing principles of both di-

mensions of musical structure in order to instruct com-

puters to compose music. Today, computers constitute 

true assistants in several stages of the composer’s tasks. 

Ultimately, composers can design algorithms that conse-

quently “compose” musical pieces or provide large 

chunks of raw material, which can then be manipulated 

and assembled. 

From the early days of computer music until recently, 

the most common, and almost exclusive, music represen-

tation used in computer-aided algorithmic composition 

systems was symbolic (e.g., MIDI). Despite the clean, 

robust, and discrete information provided by symbolic 

music representations, this type of data has limitations. 

For example, the MIDI specification does not include 

timbral information. Given the relevance of timbre for-

mation and “harmonic” relationships between vertical 

musical structures in this study, our attention turned to an 

encoding format of the musical auditory experience, i.e. 

audio signals.  

Audio signals are a precise, flexible, and rich represen-

tation of the auditory experience presenting new possibil-

ities for music creation in comparison with those offered 

by symbolic music representations. Additionally, today, 

the most common music distribution format is digital 

audio rather than symbolic representations. Nonetheless, 

audio signals’ low-level representation requires the use of 

algorithmic strategies—from the field of music infor-

mation retrieval (MIR)—to attempt to obtain the same 

level of information provided by symbolic codes. Typical 

examples of such MIR strategies are (polyphonic) pitch 

detection, beat tracking, downbeat detection, and struc-

tural segmentation [1]. These algorithmic strategies not 

only offer an understanding of audio signals higher than 

its low-level (sample) representation, but also may effec-

tively contribute to the process of music creation. A typi-

cal example of an MIR research topic that greatly com-

bines most aforementioned tasks is automatic mashup 

creation, which attempts to identify, manipulate, and syn-

thesize songs or musical excerpts that “fit” together. Goto 

[2] referred recently to automatic mashup creation as one 

of the grand challenges of MIR. 

In this paper, we explore the reliability of a perceptually 

informed measure of (sensory) dissonance as a “general” 

measure of musical dissonance in the context of music 

mashup creation. Specifically, we aim to study the appli-

cation of auditory roughness as an algorithmic composi-

tion strategy to control the “pleasantness” of sound ob-

jects vertical aggregates. This method was first proposed 

by Parncutt [3] and used as an algorithmic-assisted com-

position strategy by Strasburger [4] and Ferguson [5] in 

the symbolic music domain. The innovative aspects of 

this research is the use of audio signals as opposed to 

symbolic music representations and the possibility to 

process any type of sound independent of sources or 

causes—making the strategy suitable for analyzing and 

generating both soundscapes and polyphonic music. 

It is important to note that the research presented here 

only deals with audio signals segmented at the sound 

object time scale and does not consider components of 

musical structure other than harmonic relationships be-

tween vertical musical elements. Many relevant elements 
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that actively contribute to the quality of vertical musical 

structure such as rhythmic features will not be addressed.  

The remainder of this paper is structured as follows. In 

Section 2 we review algorithmic music strategies for the 

generation of vertical musical structure. In Section 3 we 

introduce two important concepts of this research—

consonance and dissonance—constrain their application 

in the context of the current research, and present an al-

gorithm for computing auditory roughness. In Section 4 

we detail an experiment that aims at investigating how 

roughness correlates with human judgments of disso-

nance. In Section 5 we present and discuss the experi-

ment results. In Section 6 we demonstrate how the cur-

rent research has been applied in the software earGram 

[6] for recombining sound objects into soundscapes and 

polyphonic music. Finally, in Section 7 we state conclu-

sions and future work. 

2. VERTICAL DIMENSION OF MUSIC: 

AN ALGORITHMIC APPROACH 

The vertical dimension of music is related to the relation-

ship between simultaneous events (e.g., a piano chord or 

a contrapuntal texture), or the sonic matter (e.g., spectrum 

of a violin tone), which can occur at several layers of 

musical structure. For example, at the macro and meso 

levels of musical structure, a possible strategy to shape 

the vertical dimension of musical structure is to orches-

trate its musical events. On the sound object temporal 

scale—the structural level of interest here—typical ex-

amples of vertical structures are chords and timbre for-

mation/modulation.  

The vertical dimension of music structure has been a re-

search topic revisited since the early days of computer-

assisted algorithmic composition in the late 1950s. The 

study of vertical musical structure generation is rather 

evident in algorithmic music strategies for style imitation, 

i.e. the branch of algorithmic composition that focuses on 

the formalization of principles extracted from music theo-

ry, particular works, or a body of works to generate music 

that resembles at some level the analyzed music. Some of 

the topics that have been continuously revisited within 

this line of research are: the generation of species coun-

terpoint [7, 8]; functional harmony as used in Western 

music from the 17
th

 to 19
th

 centuries [9, 10]; the automat-

ic generation of polyphonic rhythms, namely in the con-

text of interactive music systems [11]; and the explora-

tion of serial music operations [12, 13]. 

Despite the considerable body of knowledge on algo-

rithmic strategies for generating vertical musical struc-

tures, very little research on this domain deals with musi-

cal events encoded as audio signals or even addresses 

musical representations other than symbolic music codes. 

Additionally, most algorithms presented in this domain 

cannot deal with the low-level representation of audio 

signals and only process clean and discrete data, in par-

ticular the pitch and duration of overlapping events. De-

spite the accuracy and robustness of pitch detection algo-

rithms for monophonic audio signals, state-of-the-art al-

gorithms for polyphonic pitch detection are not yet very 

reliable [14]. Therefore, the above-mentioned algorithms 

cannot consistently manipulate most music encoded as 

audio signals due to its predominantly polyphonic nature.  

An exception to the prevailing use of symbolic repre-

sentations in algorithmic composition is the recent work 

in MIR, which has been gradually expanding its area of 

action towards music creation [14]. One such emerging 

topic is mashup creation, which makes use of content-

based analysis to retrieve “mashable” material from large 

databases according to particular audio features like har-

monic compatibility [15, 16], or even automatically gen-

erate song remixes/mashups [17, 18]. Despite recent ef-

forts, so far, results focus on simple harmonic models, 

whose matching criteria happens in chroma space (i.e., 12 

dimensions) that does not address spectral/timbral proper-

ties. Our approach focuses on the study of a model for 

harmonic incompatibility between vertical sound events 

rather than the presence of high harmonic similarity, thus 

offering a broader range of musical possibilities. 

3. CONSONANCE AND DISSONANCE: 

AUDITORY ROUGHNESS 

In music, the terms “consonance” and “dissonance” are 

subject to various misconceptions, confusions, and disa-

greements as may be shown by their inconsistent defini-

tions in dictionaries, harmony textbooks and books on 

musical acoustics [19]. Tenney [19] has also shown that 

both concepts refer to different phenomena depending on 

historical, cultural (tradition), and musical (composer’s 

idiom or stylistic features) contexts. Additionally, while 

striving to clarify the semantics of what he calls the "con-

sonance/dissonance-concept" (CDC), Tenney examined 

the roots and developments of the terms in western musi-

cal culture and presented the following five categories in 

which the terms are addressed distinctly: (1) melodic: 

distinguish degrees of “affinity, agreement, similarity, or 

relatedness” between melodic intervals; (2) diphonic: 

sonorous character of simultaneous dyads; (3) contra-

punctual: consonance/dissonance defined by role in coun-

terpoint (the important aspect is the context in which it 

occurs, not the physical properties of the sound); (4) 

chordal/functional: CDC applied to individual tones in a 

chord; and (5) timbral: equated with “roughness”. 

Due to computational limitations, namely the robust-

ness of polyphonic pitch detection algorithms, Tenney’s 

CDC 1-4 will not be considered in this study, because 

their organization relies on discrete characterization of 

notes. Our work will focus on timbral CDC because it 

can be readily measured and its computation measure-

ment is well established. 

Harmony resulting from roughness measures largely re-

lates to orchestration, and to a lesser extent to harmonic 

tonal syntax. Additionally, it is also relevant in electroa-

coustic music and connected to contemporary approaches 

to pitch.
1
 Barlow was probably the earliest composer to 

                                                             
1
 Roughness also proved to be helpful in the analysis of contemporary, 
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use roughness in composition in his piece Çoğluoto-

büsişletmesi (1978). The research behind the aforemen-

tioned piece would later be incorporated into the algo-

rithmic composition program Autobusk. Spectral music 

composers, in their journey of discovery for new sound 

organizations based on sounds inner structure, also paid 

attention to the roughness phenomenon. A typical exam-

ple of spectral music that explores the roughness phe-

nomenon is the opening section of Grisey’s Jour, Contre-

Jour (1979). More recently, we can cite the works of 

Strasburger [4] and Fergusson [5]. In non-western musi-

cal traditions the effect of roughness has also been ex-

plored (e.g. Indian tambura drone, Bosnian ganga sing-

ing, and Middle Eastern mijwiz and ganga singing) [21].  

Even if roughness has raised some interest within the 

music and scientific communities, few current musical 

applications take advantage of this measure, in particular 

to analyze large amounts of music as they unfold in time 

and generate vertical musical structures. A possible rea-

son for this fact is the disconnect between the dissonance 

models from music theory and psychoacoustics. Nonethe-

less, despite this disconnect, roughness measures innate 

and intrinsic human perception phenomena, which con-

tributes for concepts of musical consonance and disso-

nance [20]. Empirical research has also reinforced and 

confirmed this relationship. For example, Miskiewicz 

[22] has shown a strong correlation between how musical 

dyads are understood in sensory terms and in common 

tonal syntax. Nevertheless, “musical” dissonance embeds 

idiosyncrasies such as explicit and implicit rules or sche-

mata that go beyond physics or physiology [20]. 

Our use of sensory dissonance departs from Terhardt’s 

[23] psychoacoustic theory, which defines the phenome-

non as a combination of the three following sound fea-

tures: (1) sharpness (also addressed as brightness), (2) 

roughness, and (3) tonalness. Notwithstanding the phe-

nomenon of sensory dissonance being regulated regulated 

by three factors, we will simply addressed it by its most 

prominent factor, which is the roughness of a sound, be-

cause there isn’t a model that describes the interaction of 

the aforementioned psychoacoustic factors [24]. 

The roughness of a sound is the physical correlate of 

amplitude fluctuations [21] (also addressed as “beatings”) 

produced when two frequencies are a critical bandwidth 

apart, which is approximately one third of an octave in 

the middle range of human hearing [23]. The sensation of 

“roughness” or “fast beats” occurs when the rate of two 

frequency amplitude fluctuations are over 20 Hz up to a 

critical bandwidth. Dissonant sounds within this approach 

produce “fast beats”, and consonance is the absence of 

such beating sensation. 

Timbre can also affect our subjective experience of mu-

sical dissonance and harmonic progression [24]. In par-

ticular, partials of complex tones can also produce a beat-

ing sensation when the same conditions are met, i.e., 

                                                                                                  
non-tonal and non-western music and performance where traditional 

analytical systems fail, and for the exploration of arbitrary musical 

scales or tunings other than the 12 temperate scale [20]. 

when they are a critical bandwidth apart. As a result, the 

timbre of complex tones can affect our experience of 

roughness. This evidence was concluded since the early 

experiments on this domain; however, only recently re-

search on this domain started tackling this issue more 

systematically, i.e., investigating and developing algo-

rithms to measure roughness between sonorities, taking 

into account the effects of timbre and microtonal inflec-

tion [24, 25]. Still, the latest most significant experiments 

on this domain rely on “artificially” created sounds (syn-

thesized sounds with highly controlled parameters) or 

simplistic examples (e.g., the monophonic instruments 

sounds). To our knowledge, empirical studies on auditory 

roughness have not addressed natural and complex musi-

cal stimuli and do not represent the variability that can be 

present in natural music listening situations, which differ 

from “synthetic” ones in a number of ways, such as am-

plitude and phase of the partials, attack cues, etc. Conse-

quently, despite the unpredictable factors associated with 

natural and complex musical stimuli, no clear knowledge 

exists about the correlation between natural musical 

stimuli and human judgments of dissonance as under-

stood in tonal music syntax, as we study here. Before 

delving into the experiment, we should clarify the rough-

ness measure used in the current study. 

The roughness computation used in our experiments 

and in the musical applications detailed and discussed in 

the reminder sections of this paper uses Porres’s imple-

mentation [24] of Parncutt’s roughness (�) measure [26]: 

 

� =
!! ∙ !! ∙ !(!!")

!!
!

!!!

!!!

!

!!!                     (1) 

where aj and ak are the amplitudes of two frequencies 

being compared; fcb is the distance between the frequen-

cies in critical bandwidths (Bark); and  g(fcb) is a “stand-

ard curve” developed by Parncutt
 
(equation 4) that mod-

els experimental data of Plomp and Levelt [27]. To con-

vert a frequency f from Hz to Bark, we use the equation 

proposed by Barlow [28], which merges Terdardt and 

Traunmüller: 

� =

13.3  ∙ atan 3  ∙
!

!"""
,   � < 219.501

!".!" ∙!

!"#$!!
− 0.53,   � > 219.501

      (2) 

Traunmüller’s equation (equation 2, lower row) has an 

added correction factor for values of z > 20.1: 

�
!
= � + 0.22  ∙ (� − 20.1)                 (3) 
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�(

!!"

!.!"
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!!"
!.!"

)
!

, �!" < 1.2

0 , �!"  > 1.2

      (4)  

 

 We used Pure Data’s external sigmund~ developed by 

Puckette to extract pairs of frequency and amplitude of 

the 50 most prominent peaks of the spectra. 
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4. EXPERIMENT 

An experiment was carried on to assess how well audito-

ry roughness can be applied as a “general” measure of 

musical dissonance. The experiment consisted of a listen-

ing test, which aimed to evaluate the relationship between 

human judgment of dissonance and roughness, with the 

hypothesis that human judgment would be correlated 

with roughness. Specifically, we expect a negative corre-

lation between both variables, because, to simplify the 

experiment, the scale of the human ratings was inverted 

in relation to the measure of auditory roughness. Addi-

tionally, we conjecture that the presence of non-pitched 

sonorities may bias the established hypothesis.   

We created 3 datasets for the listening experiment, each 

with 150 musical stimuli with duration between 1-2s, 

resulting from the overlap of different sound events. The 

3 datasets encompass the following sound types: (1) qua-

si-harmonic sounds (clarinet notes and piano chords); (2) 

quasi-harmonic and non-pitched percussion sounds (clar-

inet notes, guitar motives, and drumbeats); and (3) envi-

ronmental sounds (field recordings of a park and a for-

est). Then, for each stimulus, we calculated its roughness 

using the algorithm described at the end of Section 3. We 

then sorted the values of each dataset in an ascending 

order, divided the entire range of values in five equal 

parts, and randomly selected three stimuli from each part 

in order to guarantee that the musical stimuli used in the 

experiment covered the entire range of auditory rough-

ness per dataset. In total, each participant was asked to 

rank 45 musical stimuli—15 musical stimuli per dataset. 

The experiment was run as follows: for each new ex-

cerpt the participants were asked to rate the degree of 

dissonance of each stimuli on a 1-5 scale, with 1 being 

very dissonant and 5 very consonant. The three datasets 

were evaluated separately, and the order of the stimuli 

was randomly selected. To allow the participants to get 

familiar with the experiment there was a short training 

phase prior to starting the main experiment. 

In total, 41 participants were recruited to take the exper-

iment (22 males and 19 female, with ages ranging from 

18 to 27 years old). Since musical training could affect 

the type of judgments, we restricted the participants to 

classically trained music students undergoing a bache-

lor’s or master’s degree. The participants were not paid 

for taking part in the experiment.  

5. RESULTS 

To examine the results of the listening test we first com-

puted the mean values of all participants’ dissonance rat-

ings for each stimulus and then, for each corpus, we 

computed the Pearson correlation coefficient between the 

mean values of the human dissonance ratings and rough-

ness.  

The results indicate a statistically significant negative 

relationship between roughness and user judgments for 

quasi-harmonic sounds (dataset 1), and no significant 

relationship for the two remaining sets (Table 1 presents 

the Pearson correlation coefficient results for the three 

datasets and their statistical significance and Figure 1 

depicts in a scatter plot the relationship between the ex-

periment variables for the 3 datasets). The negative corre-

lation observed in datasets 1 and 2 results from the fact 

that the human ratings and roughness scales are inverted, 

i.e. the most consonant sounds are values close to zero 

according to the roughness measure used and correspond 

to the maximum value (5) in the human ratings scale (1-

5). 

 

 
Pearson correlation 

coefficient (r) 

Statistical 

significance (p) 

Dataset 1 -0,7754 < 0.001 

Dataset 2 -0,4571 0.09 

Dataset 3 0,0863 0.76 

Table 1. Correlation between human judgments of 

dissonance and roughness for three different da-

tasets of sound stimuli (see section 4). 

 

 

Figure 1. Scatter plots exposing the correlation 

between roughness and human judgments of dis-

sonance by trained musicians for three datasets of 

sound stimuli. 

Despite being non-significant, dataset 2 still presents 

some degree of correlation between roughness and hu-

man judgments of dissonance, which is unverified in da-

taset 3. This phenomenon may result from the increasing 

level of inharmonicity of dataset 3 in comparison with 

dataset 2. However, additional research is necessary to 

verify this hypothesis. Additionally, the participant’s rat-

ings of dataset 3 may suffer from some inconsistency due 

to a lack of understanding of the concept of disso-

nance/consonance in environmental sounds. We believe 

that this fact is due to the lack of exposure of the partici-

pants to these types of sounds in an analytical manner 

given their musical background (which typically does not 

consider environmental sounds as “musical sounds”). 

Summarizing, the experiment results show a high de-

gree of correlation between human judgments of disso-

nance/consonance and auditory roughness for quasi-
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harmonic sounds and no significant relationship for, or in 

the presence of, non-pitched sounds. 

6. MUSICAL APPLICATIONS 

The use of auditory roughness in computer music has a 

large range of applications in musical analysis and com-

position, in particular to describe and/or generate vertical 

musical structures. In terms of analysis, the use of rough-

ness may provide some insights about the organization of 

the vertical dimension of music at specific times, or pro-

vide a curve that exposes the temporal evolution of the 

roughness of a particular composition. Auditory rough-

ness is not a guaranteed measure of musical dissonance—

which is a subjective and context-dependent concept—

nevertheless, there’s a strong correlation between the two 

concepts, which makes roughness a good measure to ana-

lyze music where no score is available, for music outside 

of the Western music tonal vocabulary for which strict 

rules are known in advance, or to automatically analyze 

large amounts of music. In terms of composition, the 

most strikingly aspect of roughness is the possibility to 

systematically organize non-harmonic sonorities accord-

ing to a “timbral grammar.” This includes two important 

areas that lack a systematic approach to the task: (1) all 

possible tunings related to timbres, (2) extending sound-

objects solfège with a sort of “tonal” vocabulary, taking 

over the role of pitch and harmonic syntax in Western 

music. 

In the context of our work auditory roughness was used 

to regulate the quality of vertical musical layers of sound 

objects in earGram [6], a concatenative sound synthesis 

(CSS) software for content-based algorithmic-assisted 

audio composition. Even if CSS deals primarily with the 

horizontal dimension of music, i.e., the generation of mu-

sical sequences, current practice expands the technique to 

the synthesis of overlapping units [29, 30]. Despite the 

popularity of this new approach, the resulting sound qual-

ity of the vertical superposition of audio units has been 

overlooked. Specifically, roughness was used in earGram 

to regulate the dissonance of overlapping audio units in 

two “playing modes” of the software: shuffMeter and 

soundscapeMap. ShuffMeter was designed to recombine 

sound objects into phrases characteristic of a user-

assigned meter and soundscapeMap the manipulation and 

synthesis of soundscapes. Both methods allow the gen-

eration of several concurrent vertical layers by superim-

posing sound objects. A detailed description of both algo-

rithmic strategies and particularly how they apply rough-

ness to guide vertical musical structure follows. Both 

algorithmic strategies rely on a corpus of structurally 

segmented-analyzed/described sound objects to generate 

musical sequences. For a comprehensive explanation of 

the foundations and implementation of the software and 

in particular to the analytical modules of the system 

please refer to [6]. 

6.1 ShuffMeter  

ShuffMeter relies on music theory knowledge to guide 

the generation of musical sequences that reflect a user-

assigned meter. The generation of patterns characteristic 

of a given meter result from the stochastic recombination 

of units with different stresses given by a metrical tem-

plate generated by Barlow’s metrical indispensability 

algorithm [31]. We ascribed the template representation 

to two audio descriptors: loudness and spectral variabil-

ity, because spectral and loudness changes are most likely 

to occur on stronger metrical accents [32]. The template 

may be altered during performance to regulate the 

smoothness and loudness of the generated phrases by 

regulating the clusters’ color position on interface (see 

Figure 2). ShuffMeter also allows the creation of up to 8 

synchronized vertical layers, each assigned to a sub-space 

of the corpus. The corpus is automatically divided into 

groups that expose common characteristics by clustering 

algorithms. Although the algorithm may adopt any “type” 

of temporal unit, it conveys better results when using 

units segmented on a beat basis. 
 

 

Figure 2. ShuffMeter’s interface. 

Roughness was used in shuffMeter to supervise the 

quality of overlapping of units. Prior to generation the 

user must define a guiding layer and all remaining layers 

that must conform to it. This user input is mostly neces-

sary because, to achieve better results, one must exclude 

from the roughness quality assessment non-pitched 

sounds (as shown by the experiment results). At each 

iteration, from the set of units that have a spectral varia-

bility and loudness corresponding to a particular metrical 

accent, signed layers will weight the decision of the best 

matching unit according to the minimum roughness val-

ues between the candidate units that will be overlapped 

with the guiding layer. 

6.2 SoundscapeMap 

SoundscapeMap defines target phrases to be synthe-

sized by navigating in a two-dimensional plane, whose 

axes are assigned to musical features that control the den-
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sity and the “sharpness” of the sound events (see Figure 

2). Smoothness (x-axis) controls the stability (amplitude, 

pitch, and timbre changes) of the synthesis and is as-

sessed by the (non-normalized) spectral flux of the audio 

units. Density (y-axis) regulates the number of units 

played simultaneously and ranges from one to five.  
 

 

Figure 3. SoundscapeMap’s interface. 

Despite the disconnect between “musical dissonance” 

and roughness for non-pitched sounds, roughness still 

measures important auditory phenomena. Therefore, in 

soundscapeMap the user can control the roughness’ de-

gree of overlapping units. In order to do so, the user must 

define a region of roughness in which the units should 

preferably fall on a slider. Consequently, at each itera-

tion, the algorithm restricts the corpus to units that have 

roughness values that fall within the selected range in 

relation to the last played unit. If the algorithm does not 

retrieve any units, it searches for the closest unit to the 

specified range of sensory dissonance. 

7. CONCLUSION & DISCUSSION 

In this paper we detailed an experiment that aimed at 

evaluating the correlation between auditory roughness 

and the Western concept of musical dissonance assessed 

by the empirical judgment of trained musicians. The ex-

periment results showed a statistically significant correla-

tion between the two variables for quasi-harmonic 

sounds. In addition, the relationship between the varia-

bles appears to show a decrease in correlation when 

sound inhamonicity increases.  

The results of the experiment helped refining the design 

of two algorithmic composition algorithms (shuffMeter 

and soundscapeMap) embedded in the software earGram 

that concatenate and layer short snippets of audio into 

musical phrases characteristic of a given meter and 

soundscapes. Specifically, we used auditory roughness to 

control the degree of dissonance of vertical musical struc-

tures resulting from the overlap of two or more audio 

units. Despite the poor results concerning the relationship 

between “musical consonance” and roughness for non-

pitched sounds, roughness still measures important per-

ceptual phenomena of environmental sounds (as used in 

soundscapeMap), which makes it suitable to regulate the 

generation of any audio signal independently of their 

cause and musical context. Nonetheless, users must be 

aware that the relationship with tonal musical syntax ap-

pears to decreases with increased inharmonicity. Both the 

software and several sound examples are available at: 

https://sites.google.com/site/eargram/. 

  Even if the results of the experiment detailed here en-

lighten the relationship between roughness and musical 

dissonance and although roughness shows great value for 

music analysis and composition by providing a quantified 

measure of (sensory) dissonance, its application in algo-

rithmic composition needs ultimately to rely on human 

judgments to verify or adapt the harmonic syntax to the 

application context of the creative task at issue. Rough-

ness alone does not guarantee good artistic results, just as 

consonant sounds are not necessarily preferred to disso-

nant. In fact, listeners tend to prefer a certain optimal 

amount of dissonance, complexity, or information flow 

[33]. Thus, more research is necessary to understand and 

formalize effective strategies for regulating the disso-

nance levels of the musical surface. This contrast forms 

one of the key ingredients of music composition, in 

which dissonant chords are used to create feelings of ten-

sion that are later released by consonant chords. In future 

work we intend to further study the application of rough-

ness as an algorithmic composition strategy, mainly by 

understanding its relation with musical tension. 
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