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ABSTRACT

We define the problem of machine improvisation of music

with formal specifications. In this problem, one seeks to

create a random improvisation of a given reference melody

that however satisfies a “specification” encoding constraints

that the generated melody must satisfy. We consider the

scenario of generating a monophonic Jazz melody (solo)

on a given song harmonization. The music is encoded

symbolically, with the improviser generating a sequence

of note symbols comprising pairs of pitches (frequencies)

and discrete durations. Our approach can be decomposed

roughly into two phases: a generalization phase, that learns

from a training sequence (e.g., obtained from a human) an

automaton generating similar sequences, and a supervision

phase that enforces a specification on the generated se-

quence, imposing constraints on the music in both the pitch

and rhythmic domains. The supervision uses a measure

adapted from Normalized Compression Distances (NCD)

to estimate the divergence between generated melodies and

the training melody and employs strategies to bound this

divergence. An empirical evaluation is presented on a sam-

ple set of Jazz music.

1. INTRODUCTION

Music can be automatically generated either at the audio

or at a symbolic level. The former involves processing and

synthesizing sound waves, whereas the latter is concerned

only with generating scores, i.e., sequences of (groups of)

symbols, the notes 1 , each of them being an abstract rep-

resentation of a particular sound that can be instantiated in

many different variations by different instruments or, gen-

erally speaking, by sound synthesizers. Thus, at the sym-

bolic level, generation of music can be reduced into gener-

ating sequences of letters, each of which corresponding to

a note.

Music improvisation is a special case of music generation

where one generates a random variant of a given melody.

The field of computer music improvisation, also termed as

1 Inharmonic and aperiodic sounds are beyond the scope of this paper.
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machine improvisation, has been well studied [1]. One ap-

proach to improvisation is data-driven, wherein recurrent

patterns are inferred from the reference melody, and then

replicated and recombined to form the improvisation. Dif-

ferent data structures and algorithms have been proposed

for this purpose such as incremental parsing (IP) [2] in-

spired from dictionary based compression algorithms from

the Lempel-Ziv family [3], probabilistic suffix trees (PST) [4],

and factor oracles (FO) [5]. Another approach is rule-

based, where an expert encodes rules in a formal system

such as a stochastic context free grammar (CFG), using

these to control which sequences are generated [6]. These

two approaches, while very effective in many situations,

lack certain desirable properties. First, certain rules need to

be enforced always, not just probabilistically, and can of-

ten be captured using automata-theoretic formalisms. Sec-

ond, while formalisms such as stochastic CFGs capture

some rules, it can be desirable to separate out the gen-

eration mechanism from the language in which rules are

expressed. Third, it can also be desirable to control the

amount of “creativity” in the improvisation, using some

kind of divergence measure. 2

In this paper, we present a new approach to machine im-

provisation of music that incorporates the notion of a for-

mal specification. A formal specification is a mathematical

statement of what a system must or must not do, often ex-

pressed in mathematical logic or using automata-theoretic

formalisms. It is central to certain fields of computer sci-

ence and electrical engineering, such as program verifica-

tion or supervisory control. The latter problem bears some

resemblance to the problem of music improvisation, so we

elaborate the connection here. Supervisory control refers

to the problem of designing a controller (aka “supervisor”)

that will guarantee that a given system (aka “plant”) al-

ways satisfies a set of formal specifications. If we think

of formal specifications as music rules and the “plant” as a

random improviser, then the supervisory controller is sim-

ilar to a controlled improviser of music. We formalize this

connection in the present paper and apply it to the machine

improvisation of Jazz music.

Specifically, we consider the scenario of generating a mono-

phonic (solo) melody over a given Jazz song harmoniza-

tion, similar to a given reference (or “training”) melody.

The improvised sequence has to be synchronized with an-

other sequence, usually the chord progressions, considered

as fixed and called hereafter the accompaniment. The im-

proviser then has to be a function of the training sequence,

the accompaniment, and other imposed constraints such

2 We present a more detailed discussion of related work in Section 6.
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as “safety” rules and divergence measure. We present a

generic strategy for solving this problem in three phases.

The first phase, generalization, learns from the given melody

an automaton generating a set of melodies containing the

original. We implement this phase using factor oracles [5].

The second phase, safety supervision, enforces rules on the

generalized automaton so that it plays in harmony with the

accompaniment. The rules are analogous to “safety proper-

ties” that a control system must always obey. The third and

final phase, divergence supervision, ensures that sequences

produced by the improviser automaton lie, with high prob-

ability, within a specified “similarity” divergence from the

original. This phase is implemented by assigning prob-

abilities to transitions of the improviser automaton based

on a given divergence measure. For music, several diver-

gence measures have been proposed often in the purpose

of genre classifications; amongst these, Normalized Com-

pression Distances (NCDs) have been effectively used [7],

and so we employ a variant of an NCD in this paper.

In summary, the main novel contributions of this paper

are:

• The formal notion of controlled machine improvisation

for formal specifications (Section 2);

• An approach to solve the controlled machine improvi-

sation problem based on generalization, safety supervi-

sion, and divergence supervision (Section 3), and

• An instantiation and application of our approach to im-

provisation of Jazz melodies (Sections 4 and 5).

A preliminary version of some of the ideas in this paper

have appeared in a technical report [8]. That report, not

formally published, is written from the viewpoint of con-

trol theory and introduces a broader notion termed control

improvisation. In this paper, we customize the ideas for

machine improvisation of music. We further extend our

implementation and experimental evaluation for Jazz im-

provisation.

2. CONTROLLED MACHINE IMPROVISATION

2.1 Notation and Background

As our goal is to generate symbolic musical improvisa-

tions, we work with traditional score notations, which are

based on discrete sets, namely, a discrete set of pitches

(e.g., a4, c2, g3, etc), and a discrete set of durations

(quarter notes ♩, eighth notes �,etc). As a consequence,

the formal background can be set up in terms of finite state

automata.

Definition 1. A finite state automaton (FSA) is a tuple A =
(Q, q0, F,Σ,→) where Q is a set of states, q0 ∈ Q is the

initial state, F ⊂ Q is the set of accepting states, Σ is a

finite set called the alphabet and →⊂ Q × Σ
⋃
{ǫ} × Q

is a transition relation. for which we use the usual infix

notation q
σ
−→ q′ to mean that (q, σ, q′) ∈→, and ǫ is the

empty word.

We interpret letters of the alphabet as observable events

of the system under consideration. A word w ∈ Σ∗ is

either ǫ (transition with no observable event) or a finite se-

quence of letters in Σ, i.e. w = σ1σ2 . . . σk for some inte-

ger k ≥ 1. The length of a word is defined inductively as

|ǫ| = 0 and |wσ| = |w| + 1 ∀σ ∈ Σ. A word is a trace

of a FSA A iff there exists a sequence of states qi ∈ Q

such that q0
σ1−→ q1

σ2−→ . . .
σn−1

−−−→ qn−1
σn−−→ qn. It is an

accepting trace of A iff qn is in F . The language of A,

noted L(A) is the set of accepting traces of A.

Definition 2. (Synchronous Product) The synchronous prod-

uct of A = (Q, q0, F,Σ,−⇀) and A′ = (Q′, q′0, F
′, Σ,−⇁),

noted A||A′, is defined as the FSA A||A′ , (Q×Q′, (q0, q
′
0),

F × F ′,Σ,−→) where ∀σ ∈ Σ
⋃
{ǫ}, (qi, q

′
i)

σ
−→ (qj , q

′
j) if

and only qi
σ
−⇀ qj and q′i

σ
−⇁ q′j .

Intuitively, A||A′ is a finite state machine where A and

A′ take transitions synchronously, with the constraint that

for a transition to be possible, both current states of A and

A′ must have an outgoing transition driven by the same

event.

2.2 Problem Definition

FSAs equipped with the synchronous product are then suf-

ficient to define a “controller synthesis” problem. Assume

that A models the behavior of a system for which some

states are labeled as “bad”. Synthesizing a controller amounts

to finding Ac such that the product of A and Ac will natu-

rally disable transitions leading to bad states. Note that for

modeling convenience, A is often itself decomposed into a

plant Ap and a specification As so that A = Ap||As. A

bad state is typically one from which no accepting state of

As is reachable.

A controller is said to be non-blocking if it always al-

lows the system A||Ac to reach an accepting state. It is

said to be maximally permissive when it does not disable

more transitions than strictly necessary. There is a sim-

ple algorithm [9] for finding a non-blocking, maximally-

permissive, memoryless controller, when one exists. In-

formally, the algorithm is based on locating “bad” states in

the composite automaton and then iteratively pruning away

transitions to such states, while marking as “bad” states

any predecessors of existing “bad” states or new block-

ing states. The framework of supervisory control, while

relevant, is not sufficient for our setting of improvisation.

There are two main differences:

(i) Randomness: To improvise is to incorporate some ran-

domness (“unpredictability”), whereas traditional con-

trol seeks to find safe, deterministic strategies, and

(ii) Bounded Divergence: The improvisation is created from

a reference trace wref, and is typically “similar” to it.

The problem definition should capture this constraint.

We therefore defined a new controller synthesis problem,

termed as the control improvisation problem. The goal is to

randomly generate traces among a family of “safe” traces

which are equivalent based on some divergence measure.

We assume that the latter is given by a non-negative func-

tion dwref
on words, such that dwref

(wref) = 0 and dwref
(w)

increases as w gets “further” from wref. A controller solv-
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ing the control improvisation problem influences the be-

haviors of Ap in two ways:

1. When several transitions of Ap are safe with respect to

As, one is picked following a random distribution in

accordance with the similarity criterion;

2. When no safe transition is available, one transition of

Ap is modified (replaced with alternative transitions to

the same end state but labeled with a different event) to

prevent blocking while still preserving safety.

Formally, the control improvisation problem is defined as

follows:

Definition 3. (Control Improvisation Problem) A control

improvisation problem PI is defined by: a plant FSA Ap,

a specification FSA As, an accepting trace wref of Ap||As,

a divergence measure dwref
, an interval I = [d, d] and a

pair of reals (ε, ρ) ∈ (0, 1). A solution of PI is a proba-

bilistic automaton generating words w in Σ∗ such that the

following conditions hold for each w:

(a) Safety: w is an accepting trace of As||Ap;

(b) Randomness: The probability measure of w 3 is smaller

than ρ,

(c) Bounded Divergence: Pr(dwref
(w) ∈ [d, d]) > 1− ε.

Note that problem easily generalizes to the case where

several reference words wr are provided.

2.3 Running Example

We present below a running example to illustrate the defi-

nitions and approach:

• An alphabet composed of two sets of symbols Σ =
Σa × ΣA, where Σa = {a, b, c} and ΣA = {A,C}

• A plant model Ap and a specification automaton As:

q0 q1Ap:

(⋆,A)

(⋆, C)

ǫ ǫ

s0 s1As:

(a, ⋆)

(c, ⋆)

(b, ⋆), ǫ ǫ

where we use the special symbol ⋆ as a “don’t care”

symbol. E.g., (b, ⋆) represents either (b, A) or (b, C);

• A set of reference words given by

wr = (b, ⋆)(b, ⋆)(a, ⋆)(c, ⋆).

Note that when projected on alphabet Σa, wr maps to

the unique word bbac. For ease of reading, ⋆ might be

omitted in the following.

Anticipating the musical encoding described in more de-

tails in Section 4, one can roughly see Σa as a set of “notes”,

and ΣA as a set of “chords”. The plant model fixes the suc-

cession of “chords” as alternances of A followed by C, and

the specification model puts constraints on “notes”, such

that an a has always to be followed by a c. The goal is

thus to improvise sequences of “notes”, variations of wr

so that the resulting word is compatible with Ap and As,

e.g., (b, A)(a, C)(c, A)(b, C).

3 Intuitively, the probability that w is picked among all admissible w.

c0 c1 c2 c3 c4
(b, ⋆) (b, ⋆) (a, ⋆) (c, ⋆)

(b, ⋆)

(a, ⋆)

ǫ ǫ

ǫ
ǫ

Figure 1. Factor Oracle improviser obtained from the ref-

erence words (b, ⋆)(b, ⋆)(a, ⋆)(c, ⋆).

3. FACTOR ORACLE APPROACH

3.1 Generalization using Factor Oracles

The core of our improvisation approach is based on the fac-

tor oracle (FO) structure [5]. A factor oracle is a compact

automaton representation of all contiguous subwords (fac-

tors) contained in a word w = σ1σ2 . . . σn. It has |w| + 1
states, all accepting, and its transitions can be categorized

into

1. Direct transitions of the form si
σi+1

−−−→ si+1;

2. Forward transitions of the form si
σ
−→ sj where j > i+1

and σ is some letter in w;

3. Backward transitions, also called suffix links, of the form

si
ǫ
−→ sj with j < i.

The details of the construction of factor oracles, can be

found in [10]. Some properties of FOs are as follows:

• An accepting word that takes only direct transitions is a

prefix of w;

• Factors of w are accepting words taking only direct and

forward transitions;

• Finite concatenation of factors of w are accepting words

taking all three types of transitions.

These properties make the FO a suitable structure to gener-

alize wref, so a first step to solve the control improvisation

problem is to define Ag = FO(wref). In Figure 1, we show

the factor oracle obtained from the reference word wr.

3.2 Enforcing Specifications

Even though wref is an accepting word for Ap||As, there is

no guarantee that its generalization Ag composed with Ap

is non-blocking for As. However, assuming that there ex-

ists a non-blocking memoryless controller Ac
max for Ap||As

— something that can be checked using standard super-

visory control [9] and which is guaranteed by the exis-

tence of wref — it is always possible to make Ap||Ag||As

non-blocking by adding transitions as follows. Let (q, c, s)
be a blocking state of Ap||Ag||As. Since Ac

max is a non-

blocking memoryless controller, there exists a non-blocking

transition (q, s)
σ
−→ (q′, s′) in Ap||As for some σ ∈ Σ.

Hence we can pick some state c′ in Ag and add the tran-

sition c
σ
−→ c′ to the transition relation of Ag . This effec-

tively adds the transition (q, c, s)
σ
−→ (q′, c′, s′) in Ap||Ag||As.

This procedure is repeated until no blocking state can be

found in Ap||Ag||As.

To illustrate this construction, consider automaton Ap,
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As defined in Sec. 2.3 and Ag on Fig. 1. Constructing

the product Ap||As||Ag , we find that the run

(q0, s0, c0)
(b,A)
−−−→ (q1, s0, c1)

(b,C)
−−−→ (q0, s0, c2) −→

(a,A)
−−−→ (q1, s1, c3)

ǫ
−→ (q1, s1, c0)

leads to a blocking state (q0, s1, c0), as As requires a c

transition, whereas Ag only permits an a or a b. Hence we

add the transition c0
(c,C)
−−−→ c1.

One remaining question is how to pick the un-blocking

transition when more than one choice is possible. One pos-

sibility is to pick a transition which is close in some sense

to an existing transition of Ag . For example in our musical

application where transitions corresponds to note events,

we can pick notes with the closest pitch or duration. An-

other possibility is to rely on a Markov model as suggested

in the next section, to pick the most frequent valid succes-

sor note.

3.3 Divergence Control

The last step is to define transition probabilities satisfying

the Randomness and Bounded Divergence requirements.

We begin by concretizing the similarity divergence that

we use, which is a variant of the Normalized Compres-

sion Distance introduced in [11] and is based on the the-

ory of Kolmogorov complexity. The Kolmogorov Com-

plexity of an object x (denoted K(x)) is defined as the

length of the shortest compressed code to which x can

be losslessly reduced. The Kolmogorov Complexity of

y given x (denoted K(y|x)) is the length of the shortest

compressed code to which y can be losslessly reduced as-

suming knowledge of x. In practice, K(x) is not com-

putable, and so is typically approximated by C(x) where

C(x) = length(compress(x)) for some compression al-

gorithm compress and K(y|x) can be approximated by

C(y|x) = C(xy) − C(x)[7], where xy is the concatena-

tion of x and y. Then the Normalized Compression Dis-

tance (NCD) [11] between x and y is defined as

NCD(x, y) =
max (C(x|y), C(y|x))

max (C(x), C(y))
.

Informally, it estimates 1 minus the mutual information in

x and y. In our case however, the amount of information in

an improvisation that is not in the reference trace is of more

interest than mutual information, hence we define the simi-

larity divergence based on the asymmetric quantity
C(y|x)
C(y) ,

as follows.

Definition 4 (Similarity Divergence dwref
).

dwref
(w) =

C(w|wref)

C(w)
+ (1−

C(wrefwref)

C(wref)
)

The second term in the sum ensures that dwref
(wref) = 0.

In our application we used the LZW compression algo-

rithm to compute C(·).
Finally, a simple way to assign probabilities to transitions

in a FO is as follows. Recall that traversing the n+1 states

in sequence by taking direct transitions reproduces wref.

Improvisation, i.e., variation from the original sequence, is

obtained by randomly taking forward transitions or back-

ward transitions. Thus the higher the probability of taking

direct transitions, the more similar the output is to the orig-

inal sequence. In our implementation, we assign the prob-

ability p to each direct transition, so that the improviser

replicates wref when p = 1, and probability 1 − p equi-

distributed to other outgoing forward or backward tran-

sitions. This provides for a simple parameter controlling

how different the improvised sequence is from wref.

A more sophisticated way of assigning the probabilities

is to build a first-order Markov Chain (MC) on the pitch

sequence of wref and assign the probabilities of forward

and backward transitions according to the transition prob-

abilities of the MC, which is computed using frequentist

inference. This substitutes the previously described uni-

form distribution of forward and backward transitions with

a non-uniform distribution, with the purpose of generating

sequences whose pitch distribution is more similar to the

training sequence.

The overall process for generating an improvised sequence

of n events is summarized below:

1. Maintain a sequence (q0, c0, s0)(q1, c1, s0) . . . (qk, ck, sk)
of states of (Ap||Ag)||As and a word wk = σ0σ1 . . . σk ∈
Σk,

2. If k ≥ n and sk is accepting, return w = wk

3. Else if (qk, ck, sk) has outgoing transitions (non-blocking),

assign probabilities according to replication probability

p and pick σk+1 and (qk+1, ck+1, sk+1)

4. Else if (qk, ck, sk) is blocking, pick a safe σk+1 and

(qk+1, ck+1, sk+1) as defined in Section 3.2.

For a given choice of replication probability p and ε > 0,

there is an interval I = [d, d] such that the probability that

the divergence between the improvised and reference word

is in I is less than ε. This interval can be determined ex-

perimentally, and our experiences showed that I is usually

narrow, which indicates that p is a suitable parameter to

adjust to a desired divergence [8].

4. A FORMAL MODEL

4.1 Musical Notations

We abstract and formalize a piece of jazz music into a

melody, a string of pitched notes and rests, aligned with an

accompaniment, a looping sequence of chords with given

durations. The time unit is the beat and the piece is divided

into bars which are sequences of k beats. We assume that

the accompaniment is fixed and our goal is to define an im-

proviser for the melody. Hence, the plant FSA will model

the behavior of the accompaniment, without constraining

the melody, and the specification FSA will set constraints

on acceptable melodies played together with the accom-

paniment. To encode all events in a score, we use an al-

phabet composed of the cross-product of four alphabets:

Σ = Σp × Σd × Σc × Σb, where

• Σp is the pitches alphabet, e.g., Σp = { > , a0, a#0, b0,

c0, · · · },
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• Σd is the durations alphabet, e.g., Σd = {�, ♩, ˘ “, . . .}
with ♩ = 1 beat. Note that Σd also includes fractional

durations, e.g., for triplets, as discussed below;

• Σc is the chords alphabet, e.g., Σc = {C, C7, G, Emaj,

Adim, . . .},

• Σb is the beat alphabet. E.g, if the smallest duration

(excluding fractional durations) is the eighth note, i.e.,

half a beat, then Σb = {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5}.

All automata in the following will use implicitly the full al-

phabet Σ. However, each component alphabet is meant to

address one particular aspect of the music formalization,

and we will construct the specification automaton by the

composition of different sub-automata using these differ-

ent component alphabets. Also, note that this encoding of

music is of course not unique nor meant to be canonical,

and other types of alphabets can be used in replacement to

or to complement the one we propose and used. E.g., we

do not consider here note velocity (i.e., the intensity of the

sound of the note).

Example 1. We provide an example encoding of a simple

score using the formalism defined in Section 4. Consider

the following extract:

G

˘ ˇ ˇ
C

ˇ ˇ ˘

It contains a melody and a chord progression which is

represented by the following word in our alphabet:

(g4, ˘ “ ,G,0) (b4,♩,G,2) (d5,♩,G,3)

(d5,♩,C,0) (b5,♩,C,1) (g4, ˘ “ ,C,2)

4.2 Encoding Chord Progressions

The harmonic context of the melody is given by the chord

progression (accompaniment). The plant FSA Ap then en-

codes the events of specified chords at specified times. The

basic idea of the encoding is to define as many states as

there can be events of the minimal possible duration in

a bar, i.e., in four beats, and replicate those states for as

many bars as needed. Then transitions from one state q to

another state q′ is possible when a note of the proper du-

ration is possible and if in the duration of this note, there

is no chord change. This construction is illustrated in Fig-

ure 2.

4.3 Rhythmic and Harmonic Specifications

The specification FSA encodes rhythmics and harmonic

(tonal and modal) constraints involving notes in the melody

which enforce some general structure and basic musical

consistency. The following specifications are adapted and

simplified from the generic guidelines found in [12]. We

structure Jazz melodies into licks defined informally as short

melodic phrases of pitched notes separated by either rests

or long notes. Then we impose that licks start on specific

beats. E.g., start beats can be 0.5, 1.5, 2.5 or 3.5, i.e., off-

beats. This specification can be encoded in the automaton

(a) on Fig. 3.

The second specification has to do with durations which

are not multiples of the smallest duration. In that case, we

require that it be repeated until the total duration is such a

multiple. The typical example of this situation is the triplet,

e.g.,

—##
#—

3

ˇ ˇ
ŢŢ

ˇ , which is the concatenation of three notes of

duration 1
3 , noted

3
¯
�. Without loss of generality, we model

only this case, shown as the FSA (b) in Fig. 3, as other

fractional durations are dealt with in a similar manner.

Finally, we define constraints on the pitches of the notes

in the melody. The pitched notes are classified based on

their accompanying chord. We follow the three primary

tone classifications as described in [12]:

• Chord tone: a pitch belonging to the current chord;

• Color tone: a pitch that does not belong to the cur-

rent chord but complements and creates euphony with

the current chord;

• Approach tone: neither a chord nor color tone that

is followed by pitched note that differs by exactly 1

semitone;

This classification provides a set of “good” pitches for each

chord. Color tones can be defined by a scale, i.e., a set

of pitches, which is overall “compatible” with the whole

song, and to which we remove potential “avoid” notes for

the current chord. As an example, consider a song in the

key of C. All notes in the C major scale {c,d,e,f,g,a,b}
are safe to be played in general, however if an F chord is

played (composed of pitches f,a,c), we need to avoid b

which is highly dissonant with f. Hence the set of good

notes in this situation is {c,d,e,f,g,a}. The assignment

of individual scales and modes, e.g. pentatonic, octatonic,

ionian, lydian, to chords in the chord progression is also

possible, thus increasing the temporal granularity of har-

monic constraints, which is specially relevant for toniciza-

tion, modulation and modal harmony. The approach tones

make it possible to deviate “temporarily” from these good

notes: if a note not classified as good is played, it must

be short and followed by a good note immediately and not

further than a semi-tone away from it. We simplify this

into the automaton (c) in Fig. 3.

4.4 Improviser Architecture

The automaton obtained by composing the specifications

above with the accompaniment automaton is non-blocking;

thus, we can apply the approach proposed in Section 3.

However, our early experiments showed that a single view-

point system in which the model predicted note duration

and pitches together was too inflexible, in that the con-

trol mechanism would have to add too many edges to the

factor oracle generator in order to avoid blocking states.

Therefore, we adopted a multiple viewpoint system which

improvises rhythms and melodic pitches separately. The

architecture presented in Figure 4 has been implemented

in Python, using the Music21 library. 4 We present some

4 http://web.mit.edu/music21
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s0 s1 s2 s3 s4 s5 s6 s7
(⋆,♩,C, 0) (⋆,♩,C, 1) (⋆,♩,C, 2) (⋆,♩,C, 3) (⋆,♩,G, 0) (⋆,♩,G, 1) (⋆,♩,G, 2)

(⋆,♩,G, 3)

(⋆, ˘ “ ,C, 0) (⋆, ˘ “ ,C, 1) (⋆, ˘ “ ,C, 2) (⋆, ˘ “ ,G, 0) (⋆, ˘ “ ,G, 1)

(⋆, ˘ “ ,G, 2)

Figure 2. Chords progression automaton Ap of the example. It consists in an accompaniment looping on chord C during 4

beats (1 bar) and chord G during 1 bar, with duration alphabet restricted to quarter notes and half notes.

s0 s1

s2

rest

start-beat∧short

rest
short

long

rest start-beat∧short

s0

s1

s2

⋆\

3
¯
� 3

¯
�

3
¯
�

3
¯
�

s0 s1

good-pitch

approach

∧ short

good-pitch∧approach± 1
2

(a) As
1:Licks (b) As

2: Triplets (c)As
3: Pitches

Figure 3. Specification automata As = As
1||A

s
2||A

s
3. “rest” indicates a rest in the melody of any duration. “start-beat”

indicates a label of the form (⋆, ⋆, ⋆, b) where b is a beat value for which a lick can start. “short” indicates a note in the

melody of short duration, e.g., of duration less or equal to a beat (♩). Conversely, “long” indicates a note of a longer

duration, e.g., strictly more than ♩. “good-pitch” indicates a note with a pitch which is either a chord or a color tone.

“approach” indicates an approach tone. “approach± 1
2” indicates an approach tone plus or minus a semi-tone.

results in the next section, as well as on a dedicated web-

page. 5

5. RESULTS

We evaluated our improviser using a melody generated by

the software Impro-visor ([6]) over the standard 8-bar blues

chord progression, and the first verse melody of The Girl

from Ipane-ma composed by Tom Jobim. We generated

an improvisation with and without specification both with

probability of direct transitions assigned to be p = 0.8
(Figure 6). The reference melody and the controlled im-

provisation share several similarities, however the impro-

visation also deviates sufficiently from the original to be

considered unique. The uncontrolled improvisation con-

tains several notes (highlighted in red) that are not chord,

color, or approach tones and which are therefore undesir-

able.

Using the verse melody of The Girl from Ipanema as the

reference trace, we generated over the B section of the

same piece one improvisation from a supervised factor or-

acle with specifications based on one scale per chord and

another improvisation with specifications based on one key

for all chords. Due to the modulatory nature of the chord

progression and different tonicization every four bars, the

key-based method uses color tones that do not fit the chords

or the local harmonic field implied by them. On the con-

trary, the scale based method produces notes that better fit

5 http://www.eecs.berkeley.edu/˜donze/impro_
page.html

(a)

(b)

(c)

Figure 5. (a) Training melody, (b) improvisation gener-

ated with specifications (c) improvisation generated with-

out specifications. Black notes are chord tones, green (cir-

cled) notes are color tones, blue (squared) notes are ap-

proach tones, and red (crossed) notes are other (undesir-

able) tones.
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Input training: chords + melody
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Figure 4. Architecture of the improviser with multiple view points.

(a)

(b)

(c)

Figure 6. (a) Girl From Ipanema training melody, (b)

improvisation generated with one mode specification per

chord, (c) improvisation generated with global key speci-

fication. Black notes are chord tones, green (circled) notes

are color tones.

the temporal granularity of the chord progression and gives

the user control over the color tone specifications.

6. RELATED WORK

Broadly speaking, there are two approaches to automatic

music improvisation: rule-based and data-driven. Rule-

based approaches attempt to define the rules of “good”

improvisations and generate pieces of music that follow

those rules. However, it has been observed that it is dif-

ficult to come up with the “right” rules, resulting in sys-

tems that are either too restrictive, limiting creativity, or

too relaxed, thereby allowing musical dissonance [13, 14,

6]. Consequently, recent musical improvisers tend towards

data-driven or “predictive” approaches that employ ma-

chine learning. These approaches learn a probabilistic model

from music samples, and use that model to generate new

melodies. Examples of such models include stochastic context-

free grammars (SCFGs) [15, 12], hidden Markov mod-

els (HMMs) [16], and universal predictors [4, 14, 5, 17].

Some approaches combine rule-based and data-driven ap-

proaches; e.g., the Impro-visor system [6] based on SCFGs

has rules learned from training licks through the grammat-

ical inference [15].

It has been found that certain universal predictors outper-

fom other stochastic models in producing stylistically ap-

propriate music [14]. Universal predictors vary based on

the data structures and algorithms used, such as incremen-

tal parsing (IP) [2] inspired from dictionary based com-

pression algorithms from the Lempel-Ziv family [3], prob-

abilistic suffix trees (PST) [4], and factor oracles (FO) [5].

Amongst these, it has been found that the latter has some

advantages. Unlike both IP and PST, the factor oracle is

both complete (contains all factors of the given word) and

can be constructed on the fly. Due to this, factor oracles

are at the core of the OMax improvisation system 6 de-

6 http://repmus.ircam.fr/omax/home
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veloped at IRCAM and which has been used in a number

of performances. The work closest to ours is presented in

[18] which describes ImproTek, a variant of OMax which

implements a notion of harmonic context influencing the

FO-based improvisation.

Our approach extends this state of the art by providing a

way to (i) enforce certain rules in a flexible and modular

way on the generated melody, and (ii) bounding the simi-

larity divergence from the original melody. Also, many of

the improvisers discussed rely on a single viewpoint sys-

tem. In other words they attempt to encapsulate and impro-

vise all aspects (rhythm, pitches, volume, etc.) of an im-

provisation simultaneously. For example, in [14] the alpha-

bet of the prediction model is the cross product of the beat

each note starts on, the note’s pitch, and the note’s dura-

tion. Following Conklin and Cleary [19] we implemented

a more flexible multiple viewpoint approach to music gen-

eration in which note aspects are predicted separately and

then aggregated.

7. CONCLUSION

We introduced the concept of control improvisation and

presented an approach to solve it. Our approach shows

promise for automatic improvisation of Jazz music but we

believe this paper is just a first step, and there is plenty of

room for futher work. More work is required to investigate

the full space of possible similarity divergence measures

for different styles of music and there is room for improve-

ment over the base approach we present in this paper, e.g.,

to provide stronger theoretical guarantees for the “bounded

distance” condition. Also one can consider inferring the

specification automaton from examples of “good” and “bad”

melodies. Further, it would be interesting to consider real-

time improvisation (a preliminary implementation was done

in Ptolemy 7 [20]) and improvising collectively on a set of

melodies rather than just a solo piece.

Acknowledgments
This research was supported in part by the TerraSwarm Re-
search Center, one of six centers supported by the STAR-
net phase of the Focus Center Research Program (FCRP) a
Semiconductor Research Corporation program sponsored
by MARCO and DARPA.

8. REFERENCES

[1] R. Rowe, Machine Musicianship. MIT Press, 2001.

[2] S. Dubnov, G. Assayag, and R. El-Yaniv, “Universal classi-
fication applied to musical sequences,” in Proceedings of the
International Computer Music Conference, 1998, pp. 332–
340.

[3] G. Assayag, S. Dubnov, and O. Delerue, “Guessing the
composer’s mind: Applying universal prediction to musical
style,” in Proceedings of the International Computer Music
Conference, 1999, pp. 496–499.

[4] S. Dubnov, G. Assayag, and O. L. G. Bejerano, “A
system for computer music generation by learning and
improvisation in a particular style,” IEEE Computer, vol. 10,
no. 38, 2003. [Online]. Available: http://articles.ircam.fr/
textes/Dubnov03a/

7 http://ptolemy.eecs.berkeley.edu

[5] G. Assayag and S. Dubnov, “Using factor oracles for ma-
chine improvisation,” Soft Comput., vol. 8, no. 9, pp. 604–
610, 2004.

[6] R. M. Keller and D. R. Morrison, “A grammatical approach to
automatic improvisation,” in Proceedings SMC’07, 4th Sound
and Music Computing Conference, Lefkada, Greece, 2007,
pp. 330 – 337.

[7] R. Cilibrasi, P. Vitanyi, and R. De Wolf, “Algorithmic clus-
tering of music,” in Web Delivering of Music, 2004. WEDEL-
MUSIC 2004. Proceedings of the Fourth International Con-
ference on. IEEE, 2004, pp. 110–117.

[8] A. Donze, S. Libkind, S. A. Seshia, and D. Wessel, “Control
improvisation with application to music,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-
2013-183, Nov 2013. [Online]. Available: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2013/EECS-2013-183.html

[9] C. G. Cassandras and S. Lafortune, Introduction to Discrete
Event Systems. Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2006.

[10] L. Cleophas, G. Zwaan, and B. W. Watson, “Constructing fac-
tor oracles,” in In Proceedings of the 3rd Prague Stringology
Conference, 2003.

[11] M. Li, X. Chen, X. Li, B. Ma, and P. M. Vitányi, “The sim-
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