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ABSTRACT

The Model-View-Controller (MVC) software architecture

pattern separates these three program components, and is

well-suited for interactive applications where flexible hu-

man-computer interfaces are required. Separating data pre-

sentation from the underlying process enables multiple

views of the same model, customised views, synchroni-

sation between views, as well as views that can be dy-

namically loaded, bound to a model, and then disposed.

Jamoma 0.6 enables MVC separation in Cycling’74 Max

through custom externals and patching guidelines for de-

velopers. Models and views can then be nested for a hi-

erarchal structuring of services. A local preset system is

available in all models, along with namespace and services

that can be inspected and queried application-wide. This

system can be used to manage cues with modular, stringent

and transparent handling of priorities. It can also be ex-

panded for inter-application exchange, enabling the distri-

bution of models and views over a network using OSC and

Minuit. While this paper demonstrates key principles via

simple patchers, a more elaborate demonstration of MVC

separation in Max is provided in [1].

1. INTRODUCTION

1.1 Concept of Model-View-Controller separation

Model-View-Controller (MVC) is an architecture pattern

for developing interactive computer applications that

breaks the application’s design into three distinct elements

[2]. A model represents a collection of data together with

the methods necessary to process these data. The view pro-

vides an interface for monitoring and interacting with the

model. The controller is the link between the model and

view, and negotiates information between them. MVC en-

forces a clear separation between processes, their states,

and how these are being represented to the user. This sep-

aration results in each concept being expressed in just one

place, which in turn makes the code easier to write and

maintain. The architecture also makes it possible to have

multiple views for the same model. In this way, views can
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be customised and adapted dynamically based on the needs

of the user at any one time, without these changes affecting

the model itself. Furthermore, this separation permits the

developer to completely overhaul the look and feel of the

application simply by reworking the views, without requir-

ing any changes to the models.

While MVC separation is common within many program-

ming domains such as web applications development, it is

far less common in interactive computer music platforms

such as the Cycling’74 Max environment 1 . In applica-

tions for real-time creative work, the model could be a syn-

thesis or audio process algorithm, while the view provides

the graphical user interface (GUI) for the algorithm. Alter-

natively, the view could also be an interface with hardware

controllers, or an interface for inter-application communi-

cation using e.g., OpenSoundControl (OSC) [3].

Prior to Max 5, the programming of user interfaces tended

to render the logical flow of a patcher’s underlying algo-

rithm undecipherable due to dense overlaying of objects

and patch cords. In versions 5 and later, a patcher can

be represented in two ways: Edit Mode and Presentation

Mode. Typically, a user of the program will employ Edit

Mode during initial development, organising a patcher’s

layout with an emphasis on the logical structure of the pro-

cessing algorithm. Presentation Mode is then used to re-

organise the layout into a more intuitive GUI for interac-

tion, displaying only select objects of relevance and hid-

ing patch cords. Still a tight connection remains between

the algorithm represented within a given patcher and its

interface, as they are typically coded together in the same

patcher window. The interface can not easily be substituted

or altered without touching the underlying algorithm when

both are contained within a single patcher. MVC separa-

tion would be improved by instead storing the algorithm

as a patcher that is separated from its interface, so that sev-

eral different views could be developed for interaction with

a single underlying model.

1.2 Jamoma project to date

Jamoma began as a system for developing high-level mod-

ules in the Max environment. It addressed concerns about

sharing and exchanging Max patchers in a modular sys-

tem, and leveraged this structured environment to provide

an effective, efficient, and powerful means of automating

1 http://www.cycling74.com. All URLs in this article were last ac-
cessed July 14th 2014.
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and controlling patchers [4]. The source code is currently

maintained as an open-source C++ framework, named Ja-

moma Core 2 , consolidating several frameworks [5, 6, 7],

and a number of implementations, the most complete be-

ing Jamoma for Max 3 . The most recent stable version of

Jamoma for Max, version 0.5.7, was released early 2013 4 .

The upcoming version 0.6 of Jamoma implements improv-

ed model-view-controller separation, and depends on a new

Modular framework within Jamoma Core [7]. This paper

will not discuss the design of the C++ code in further de-

tails, but rather present how Jamoma 0.6 enables model-

view-controller separation in Max, how models and views

can be designed, and discuss benefits of this approach with

respect to custom and alternative interfaces, namespace ex-

ploration, monitoring of changes in the patchers, manage-

ment of mappings and states, and inter-application com-

munication.

2. MVC IN MAX USING JAMOMA

In the following description, key terminology will be in-

troduced using italics, the name of Max externals will be

boldface, and object arguments and attributes, as well as

messages communicated to and from objects, will be de-

noted using monospace.

Jamoma 0.6 for Max employs an object-oriented program-

ming approach along side a client-server architecture in

order to provide MVC separation. The model is a Max

patcher that wraps a high-level entity such as a media gen-

erator or signal processor with an accompanying set of

functional services. The view is implemented as a sepa-

rate Max patcher to provide an interface for monitoring

and controlling the services of one or many models, most

commonly by means of a GUI. Considered in terms of

object-oriented programming, the model and view are both

classes, but their purposes differ. Considered in terms of

client-server architecture, the model is a server, while the

view is a client that binds to the server.

2.1 Setting up a model

Figure 1. A Jamoma model.

2 https://github.com/jamoma/JamomaCore/
3 https://github.com/jamoma/JamomaMax/
4 http://jamoma.org/download/

Figure 1 is an example of a simple Jamoma model. This

stereo audio effect wraps a pair of degrade~ objects, reduc-

ing bit depth and sample rate in order to distort the sig-

nal. A Max patcher is declared as a model if it contains

a j.model object, with the attributes of this object primar-

ily used to document the model. Specific uses of the @tags

attribute will be explored in section 3.4. Within a model,

j.parameter, j.message and j.return objects declare various

services and specify the properties of these services as at-

tributes.

j.parameter defines a property of the model. In Max,

the associated value for this property can be easily set and

queried. The state of the model is the ensemble of the val-

ues of all of its parameters.

j.message defines a method of the model. In Max, this

results in a message that can be sent to the model to in-

duce a specific action. Users should be aware that any ar-

gument(s) of such a message are not stored as part of the

state of the model.

j.return is used to return control information to Max. For

example, if a metro object were wrapped as a model, the

user could enlist j.return to output information at each tick.

For the model in figure 1, two parameters are declared as

services of the model, samplerate ratio and bitdepth, but

the model has no message or return objects. For each of

the parameters, a number of attributes can be specified, as

detailed in [8, 9], including the type of data they can hold

and process, the range of values accepted, what to do when

receiving values outside that range, whether it is possible

to ramp to new values over time, and whether repetitions

in the value will be filtered to save processing resources or

not. The output from these parameters connects to the rele-

vant inputs of the two degrade~ objects they are to control.

This model receives audio signals to be processed, and

returns the processed signals. The j.in~ objects declare the

signal inlets, while the j.out~ objects declares the signal

outlets. These two objects introduce a number of addi-

tional services for adjusting output gain, mixing dry and

wet signals, muting or bypassing the model’s audio pro-

cessing, and remotely sending and receiving the incoming

and processed audio signals. These additional services are

collectively referred to as audio amenities. The argument

to the j.in~ and j.out~ objects identifies the channel and in-

forms the model what inlets and outlets are to be associated

for mixing and bypassing. The benefits of these services

will be discussed further in section 2.2, when a view is de-

signed for this model.

Although this example demonstrates a stereo audio ef-

fect, model design is not limited to audio algorithms. Any

patcher can be wrapped into a model, including those that

process control data, audio, Jamoma AudioGraph multi-

channel audio signals [6] and/or video signals in the form

of Jitter matrices, Jitter OpenGL textures, or other kinds of

Jitter OpenGL data. In the same way that j.in~ and j.out~

provides common services of relevance to audio process-

ing, dedicated objects are available for control rate data in-

cluding video (j.in and j.out) and AudioGraph multichan-

nel signals (j.in= and j.out=). Each of these offer amenities

relevant to the stated data or signal type.
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2.2 Designing a view

Figure 2. A Jamoma view in Edit mode.

A Max patcher is declared as a view if it contains a j.view

external. In a similar way to how j.parameter, j.message

and j.return declares services in a model, the j.remote,

j.send, j.receive, j.send~ and j.receive~ objects can be used in

views to bind to corresponding services within the model.

j.remote allows the view to both receive notification about

updates from the model and send value changes to the model.

It is the most common way to bind to a j.parameter within

a model.

j.send instead communicates changing values to the model

from the view, but does not inform the view about changes

in the model. This will often be used when binding to a

j.message within a model.

j.receive notifies the view about changing values from the

model, but does not provide any means to control the model.

Typically, this object will be used to bind to a j.return

within a model.

j.send~ and j.receive~ are audio rate counterparts of j.send

and j.receive.

Figure 2 serves to illustrate uses of the above objects by

presenting the default view for the audio effect discussed in

section 2.1 with the patcher in Edit Mode. Two instances

of j.remote bind to the corresponding j.parameter objects

in the model, and can be connected to GUI objects within

the view patcher so that the values of the parameters can be

monitored and changed. Two instances of j.receive~ bind to

the signals sent by the pair of j.out~ objects in the model,

and provide a means for monitoring levels of the processed

audio signals from the model. j.ui provides a default visual

background for the view’s GUI, while also offering access

to additional services related to preset handling, as well as

audio and/or video amenities, depending on the content of

the associated model. The purpose of these will become

apparent as we start using the model and view together

in section 2.4. While j.ui provides convenient access to

a number of services, it is not mandatory to include this

object; developers are free to design the look and feel of a

view in any way they want.

By default, views open in Presentation Mode, hiding the

Jamoma controller objects and organising the layout of user

interface elements, or widgets, into a functional interface.

Some examples of views can be seen in figure 3.

2.3 Controllers

Jamoma does not require Max developers to develop a third

patcher to act as a controller for models and views. In-

stead, controller responsibilities are mostly integrated into

the various j.* externals presented and discussed through-

out this paper.

When the Max application starts, the j.loader external ini-

tiates the Jamoma environment and sets up a global node

directory for organising all future nodes into a tree struc-

ture [7]. Models and views are dynamically added to and

removed from this directory structure as they are created

or disposed off, ensuring global awareness of all the nodes

that are available at any given time. The Jamoma environ-

ment enables behind-the-scenes communication between

the j.model object and the various services in the model,

between j.view and the various subscribers in the view, and

between subscribers and the services that they bind to. It

also enables behind-the-scenes communication of audio sig-

nals between pairs of j.in~ and j.out~ objects in audio ef-

fects models needed for dry/wet mixing and bypassing, as

part of the audio amenities. Finally, Jamoma enables the

various advanced abilities for querying, monitoring and

controlling models that will be described in section 3.

2.4 Using models and views

Figure 3. Three Jamoma models for audio processing, and

their associated views.

Figure 3 is a simple Max patcher illustrating the use of

three models and their corresponding views. Models and

views are stored as separate files, and the convention is to

use a .model suffix in the filename of models, and a .view

suffix in view filenames. This patcher contains three audio

models: input~.model, degrade~.model and output~.model.

The input model wraps common sources of audio signals

such as file playback, input from the sound card, and test

signals. In figure 3, it is currently being used to play a

sound file from disk. The degrade model was previously

discussed in section 2.1. The output model offers satura-

tion, limiting, stereo balance and gain adjustment as master

effects before passing the signal to the system’s audio out-

puts. Additionally, it provides the ability to record the au-

dio signal to disk. Arguments to the three models provide

each of them with an identifying name: my input, my degrade
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and my output. These names must be unique, so that views

can unambiguously address a specific model instance.

The patcher also contains three views, each of them in-

stantiated as a bpatcher. Each view needs to know which

model instance it should bind to, something that can be set

in two ways. In this patcher it is set statically as the first ar-

gument to the bpatcher in its inspector. j.view will grab this

argument at load time. Alternatively it can be set dynam-

ically by changing the value of j.view’s model:address at-

tribute to the address of the chosen model. We will see ex-

amples of this later, in section 3.5. Once the view has been

associated with a specific model instance, all instances of

j.remote, etc., in the view will monitor and allow access to

the corresponding services (j.parameter, j.message or j.re-

turn) of the model.

Comparing the look of the j.ui object of degrade~.view

in figure 2 to the one in figure 3, four additional widgets

have appeared in the upper right corner. When the view

binds to the model, it is informed by the aforementioned

pairs of j.in~ and j.out~ objects that the model offers spe-

cific audio amenities for output gain adjustment, mixing,

bypassing and muting. j.view then instructs j.ui to pro-

vide additional widgets for accessing these services. j.ui

can provide widgets for similar amenities when a view is

binding to Jamoma AudioGraph multichannel audio mod-

els or video processing models. The upper left widget of

all j.ui objects opens a pop-up menu offering access to a

number of services for preset storing, recalling and inter-

polation, and querying of the current state of the associated

model, collectively known as the preset amenities. The

same pop-up menu also offers access to documentation for

the model. There is an additional pop-up menu available

under the name of the bound model, which will give a list

of all services for this particular model, and allow users to

see and edit all of their attributes in a pop-up window.

In figure 3, the models and views have been located side

by side for simplicity, but they can just as well be located

in different patchers or subpatchers. Readers familiar with

complex, real-time interactive applications can imagine a

collection of all models together in one patcher, with a cor-

responding collection of views in a separate patcher. This

hopefully provides a glimpse of the benefits that MVC sep-

aration can bring to patcher organization in Max.

It should be noted that the j.model or j.view objects are

mutually exclusive, and therefore cannot be located within

the same patcher. This restriction is in place to enforce

separation of a model and a view. However, a model may

have additional j.model objects present in subpatchers, re-

sulting in nested models, as discussed in section 3.1. In

the same way, views can be nested using additional j.view

objects within subpatchers.

3. MVC AND PATCHER MANAGEMENT

Implementing Max patchers with MVC separation using

Jamoma helps address a number of real life problems ex-

perienced when working on larger applications and artistic

projects in Max that might otherwise require advance pro-

gramming skills. Separating models, controllers and views

has proven to be useful in many other programming con-

texts, but has previously been difficult to achieve in Max

because of challenges in implementing the controller layer.

Because Jamoma provides a ready-made controller layer

for Max, it frees the developer to concentrate on the devel-

opment of models and views.

3.1 Nested models

Figure 4. The output model embeds several other models,

indicated as objects with red border.

One of the earliest motivations for making the transition

to MVC in Jamoma was the ability to have nested mod-

els with a hierarchal structuring of services. The inner

workings of the output~.model provides a good example of

why this is useful. As mentioned in section 2.4, the out-

put model provides saturation, limiting and stereo balance

as master effects, in addition to audio recording capabili-

ties. Figure 4 reveals how the output model provides these

effects and capabilities via several nested models. Each

of these models has functionalities that are useful outside

of the output model, and rather than having duplicate im-

plementations of effects such as the limiter, it is more DRY

(Don’t Repeat Yourself) [10] to create a limiter~.model and

then embed this in other models as needed.

During our earlier discussion of the degrade model in sec-

tion 2.1, the concept of audio amenities was introduced.

By default, the limiter model would have these generic

audio services for controlling gain, mix, bypassing, mut-

ing and level metering. It would also have services as-

sociated with presets. However, when used as a nested

model, it might make sense to avoid duplication of the par-

ent model’s services and deactivate these services within

the limiter model. To facilitate this, the @amenities attribute

can be used to enable or disable these amenities using the

keywords all or none, or more selectively specifying spe-

cific services, such as audio or preset. When present, this

attribute is retrieved by the j.model object within the em-

bedded model, and configures services accordingly.

Nesting models leads to well-structured and descriptive

namespaces for the parameters in the model, as illustrated

by the namespace of parameters in the output model listed

in figure 5.
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a u d i o / g a i n

a u d i o / mute

b a l a n c e / mode

b a l a n c e / p o s i t i o n

b a l a n c e / shape

dac / c h a n n e l . L

dac / c h a n n e l . R

l i m i t e r / a c t i v e

l i m i t e r / d c b l o c k e r / a c t i v e

l i m i t e r / l o o k a h e a d

l i m i t e r / mode

l i m i t e r / postamp

l i m i t e r / preamp

l i m i t e r / r e l e a s e

l i m i t e r / t h r e s h o l d

r e c o r d / f i l e / t y p e

r e c o r d / samptype

s a t u r a t i o n / a c t i v e

s a t u r a t i o n / d e p t h

s a t u r a t i o n / mode

s a t u r a t i o n / preamp

Figure 5. Output model parameter namespace.

3.2 Management of priorities

When initialising a model or recalling a preset, proper con-

figuration of the model is often dependent on ensuring that

parameters are updated in a particular order. For example,

when describing the loudspeaker layout for multichannel

sound reproduction, the number of speakers needs to be

set before the positions of the speakers. This can be ad-

ministered using the @priority attribute of j.parameter.

In larger models, the nested sub-models might need to

be configured in a prioritised sequence as well. Although

it is not really needed for this particular model, figure 4

illustrates how a priority attribute can be set for the em-

bedded models. Priorities are sorted according to a pre-

order depth-first recursive traversal of the node tree [11].

The four embedded models of the output model reside at

the same level of the node tree structure, as illustrated in

figure 5, and since the saturation model has first priority, it

will be the first to be set. The various parameters of the sat-

uration model will be set according to how priorities have

been specified internally in the model. Next the limiter

will be set, and finally all the nodes that do not have any

priority, such as the balance and record models.

Figure 6. Setting priority of a node using j.node.

When creating model parameters, it is possible to design

the namespace to use intermediate nodes without having

to set them up as models of their own. Figure 6 shows

the dac subpatcher of the output model, containing two pa-

rameters labeled dac/channel.L and dac/channel.R. In this

case, the intermediate node dac is not declared anywhere

as a model; instead, it is implicitly added to the namespace

tree when the service is registered. If the priority of these

two parameters should be raised in comparison with other

nodes in the output model, it needs to happen at the node

level where dac resides, rather than the sub-branch where

the two nodes channel.L and channel.R reside. In order to

accomplish this, a j.node object is introduced, raising the

priority of the DAC and enforcing a priority for these two

parameters that is after the saturation and limiter models,

but before the stereo balance and recording models. j.node

can be thought of as a lightweight cousin of j.model, pro-

viding control over a few select properties at a node level,

but without turning that node into a full-fledged model.

3.3 Object instances

There are many situations where it is advantageous to use

a specific model multiple times within a patcher, whether it

be for parallel filters in an equalizing filter bank, or sources

and speakers in spatial scene descriptions. Whenever a

given model is used multiple times within the Max envi-

ronment, there are several ways that Jamoma supports ac-

cessing these distinct instances of the model, starting with

the namespace. Whereas the forward slash separator al-

lows users to discriminate between successive nodal hier-

archical levels, the dot separator is used to discriminate

between different instances of the same class residing at

the same hierarchical level. Instance identifiers can be pro-

vided as a numeric or symbolic suffix, depending on what

best describes their scope. The addresses of the dac pa-

rameters dac/channel.L and dac/channel.R in figures 5 and

6 illustrate this, setting what physical output channel on the

sound card the left and right channel signals of the model

are supposed to send audio to. This method for dealing

with instance naming represents a key difference between

namespaces in Jamoma and OSC addresses [12]. OSC ad-

dresses such as /channel/L offer no way to discriminate be-

tween the functional description (channel) and the part used

to describe the instance (L). By comparison, the dot sepa-

rator in (/channel.L) makes this explicit for humans and

computers alike.

Objects instances, be they models or services, can be cre-

ated manually by providing the instance identifier as a suf-

fix to the address argument. The binding mechanism of

Jamoma requires that all nodes have unique names, there-

fore two models can not share the same address. Whenever

a conflict arises, either by opening the same patcher twice

or by duplicating a model in a patcher, Jamoma posts a

warning to the Max window and temporarily solves the is-

sue by introducing unique instance suffixes such as my out-

put.1 and my output.2. If this happens simultaneously for

models and views, Jamoma will attempt to keep correct

bindings between associated models in views while intro-

ducing unique identifiers for both.

It is also possible to create arrays of models dynamically

by loading the patcher into a poly~ object. In this case, the

poly~ instance number will be adopted by Jamoma to iden-

tify the model instance. Arrays of services can be created

with the j.parameter array, j.message array and j.return ar-

ray externals. For example, parameters controlling the as-
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signment of eight audio channels could be configured eas-

ily using j.parameter array channel.[8]. It is then possi-

ble to create implicit nodes for each instance in this array

of parameters. In the case of our eight audio channels,

we could add parameters to control the speaker position

on each channel using j.parameter array channel.[8]/po-

sition.

3.4 Namespace management

The address of a service functions in a manner similar to

file and folder paths within a POSIX-compliant terminal

shell. Addresses with a leading forward slash are consid-

ered absolute, and start from the root of the local applica-

tion. The absolute address of one of the parameters of the

degrade model in figure 3 is /my degrade/bitdepth. Abso-

lute addresses are OSC-compliant [3]. Addresses with no

leading forward slash are considered relative to the context

of the current objects.

j.model sets up a local namespace context within the model,

and if a parameter or some other service is provided with a

relative address, the address will be relative to the address

of the model instance. When creating a my degrade model

instance in figure 3, the address of the bitdepth parame-

ter from figure 1 becomes /my degrade/bitdepth. The same

holds true for views. If subscribing objects within the view

are provided with a relative address, it will be relative to

the address that j.view binds to. When the degrade view

seen in figure 2 binds to the /my degrade model as seen in

figure 3, the bitdepth j.remote object within the view will

bind to /my degrade/bitdepth.

When using absolute addresses for j.remote, j.send or j.re-

ceive, it is possible to design views that bind to services in

several separate models. Using absolute addresses, it is

also possible to use j.remote, j.send and j.receive outside

of patchers strictly defined as views by the presence of a

j.view object as described in section 2.2. The same applies

to j.send~ and j.receive~. The address to bind to can be set

dynamically by setting the @address attribute of subscribing

objects, as demonstrated in figure 7.

Figure 7. Querying of namespace for models and model

parameter, and dynamically setting what service to bind to.

The namespace of a Jamoma application can be explored

in several ways. Using j.namespace, the node tree names-

pace can be explored recursively node by node, or it can

be explored using a flexible set of filters. Some pre-set fil-

ters are available in order to filter nodes based on the type

of Max object they represent, such as j.model, j.parameter,

j.message and j.return. It is also possible, with a dedicated

syntax, to filter nodes based on what type of object they

represent within the node tree (e.g., model, service, preset,

or signal inlet), or on the value of their attributes. For in-

stance the arguments of the j.model tag attribute in figure 1

identifies this class of models as as a distortion audio ef-

fect, and it will show up in namespace queries for nodes

tagged with each of these keywords. Figure 7 illustrates

how j.namespace can be used to build a menu of models,

and also a menu of parameters for the my degrade model.

Combined with the ability to dynamically set what address

subscribers bind to, this provides incredible flexibility for

manipulating the mappings between parameters during de-

velopment or performance.

While j.namespace narrows in on a few select nodes at a

time, j.modular provides a bird’s-eye perspective, report-

ing the whole namespace of the local application. This can

be exported as an XML file, or used to announce the ser-

vices of the local environment for use in query-based inter-

application communication with other OSC-compliant or

Jamoma-based applications. An example of inter-applica-

tion communication will be provided in section 3.6

At the time of this writing, only a limited subset of the ad-

dress pattern matches described in the OSC specification

[13] have been implemented in Jamoma. Asterix can be

used as a wildcard between forward slashes (/*/) to select

all nodes at a certain level, and can even be used to select

all instances of a certain kind, such as using /channel.*/ to

access all eight audio channels from the description in sec-

tion 3.3. Because this is implemented within the controller

infrastructure, it is a powerful feature for monitoring pa-

rameters. For example, if we designed a my midi in model

to receive and parse incoming MIDI messages from an ex-

ternal device on all 16 channels, we could easily monitor

all incoming continuous controller messages on all chan-

nels using j.receive /my midi in/channel.*/cc.*.

j.remote array provides access to an array of values, ei-

ther as a list of all values for all instances when set to

the @format array, or individually for each instance when

set to @format single. j.remote array is not dependent on

how the services of the node tree have been created in

the patchers. For instance, if we create eight instances of

the input~.model as introduced in section 2.4 and named

my input.1, my input.2, etc., the volume of all models can

be accessed using a single j.remote array /my input.[8]-

/audio/gain object.

3.5 Multiple and dynamic views

It is important to note the direction of dependencies be-

tween a model and view: The view depends on the model,

but the model does not depend on the view [14]. One im-

plication of this direction is that a variety of views can

be created for one and the same model. For a computer

musician working with interactive systems as part of an

extended performance instrument, the interface could be

adapted to specific needs of a given situation. In rehearsal

situations, a lot of details about the model may need to be

exposed, while only a few services are relevant during the

actual performance. It is also possible to load and dispose

of views during the course of a performance, so that the
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exposed interface dynamically updates to present only the

information relevant to a specific moment in performance.

Another benefit, when combined with observer pattern

implementation, is that it is possible to have several simul-

taneous presentations of the same parameter [14]. Section

2.2.3 of [1] provides an example of how several views to-

wards the same audio filter can co-exist. One view displays

the filter parameters as numerical values, while the other

view provides a graphical interface displaying the result-

ing frequency response, using filtergraph~. The two sub-

scribers do not interact directly, but a change in one will

update the state of the model, and then be reflected by an

update of displayed value in the other subscriber.

3.6 State management and inter-application

communication

Managing states is a critical feature of a multimedia sys-

tem. In Jamoma, there are two systems for state man-

agement: presets and cues. Both use the same underlying

mechanism, with some important differences. The preset

system is an embedded utility in j.model, and is local to

the model (and its potential sub-models). Presets can be

saved as text files and shared amongst several instances of

the same model, and such presets are used for the default

initialisation of models. The j.cue object stores and recalls

states as well, but operates application-wide. It can store

states for the entire system, or more selectively for des-

ignated parts of the namespace. Different cues stored in

the same j.cue object might address different subsets of the

namespace. j.namespace can be used with j.cue to provide

an interface for selecting what subset of the namespace to

use when storing new cues. Cues and presets both respects

priorities as discussed in section 3.2.

The j.modular object facilitates inter-application commu-

nication using multiple protocols via a set of plugins within

a generic framework [15]. This provides a way for new

protocols to be added as they are developed, as well as ex-

isting protocols to be maintained within a consistent inter-

face. At the time of this writing, two protocols are imple-

mented as plugins and available within j.modular; OSC [3]

and Minuit. The Jamoma implementation of OSC can be

used to pass OSC messages between the two applications,

and makes it possible to mirror a remote application after

loading its namespace from an XML file. j.remote objects

can then bind to parameters in the remote server applica-

tion and create networked client views in Max for mod-

els residing in the other application. Minuit is a protocol

that enhances OSC to allow querying of namespaces and

the value of specific nodes within remote applications, as

well as subscriptions to remote services 5 . Minuit also en-

ables remote control of Jamoma model parameters, so that

a remote application can provide networked views of local

models within a Jamoma application. These abilities are

used by the i-score application, an interactive intermedia

sequencer. i-score can query and visualise the namespace

tree of one or several Jamoma applications, and then re-

motely create snapshots or automate any of their services.

The snapshots of application state can be further arranged

5 https://github.com/Minuit/minuit

as structural events in time in the i-score sequencer in or-

der to author time-based multi-media interactive scenarios

[16].

4. CONCLUSION AND FUTURE DIRECTIONS

In interactive applications, user interfaces are especially

prone to frequent change requests. The ability to main-

tain a flexible interface design and respond to such change

requests can be hindered if the user interface is tightly in-

terwoven with the underlying processing algorithm. The

Model-View-Controller architecture pattern divides such

applications into distinct parts, separating interface devel-

opment from other parts of the program’s development and

making it easier to remain flexible.

[14] argues that the most important separation is that be-

tween view and model, as they are fundamentally about

different concerns. This point is just as valid in real-time

music applications as it is in business applications: The

development of the view should focus exclusively on UI

layout and mechanics. In contrast, the development of a

model should focus on processing signals, media and con-

trol data. Depending on context, users may want to see the

same underlying model information presented in different

ways. Separating model and view enables the development

of multiple views that all use the same model. A key point

of this separation is the direction of the dependencies; the

view depends on the model, but the model does not depend

on the view. Due to the implementation of a observer pat-

tern, each view is updated whenever the associated model

changes, so that several synchronised views can co-exist

[17]. Views become ‘pluggable’, and can be substituted

one for another dynamically at run-time.

Jamoma 0.6 introduces a number of externals that to-

gether enable MVC separation in the Cycling’74 Max en-

vironment. The network communication features of the

controller layer in Jamoma even enables inter-application

distribution of responsibilities, where views on one or more

clients interact with models hosted at a server. This can

be used for networked, distributed and collaborative per-

formances. Designing models and views as patchers is

straight-forward, and results in tangible improvements to

the overall process of designing interfaces within Max.

This paper has provided several brief examples that serve

to illustrate these improvements. For a more extended

demonstration of MVC separation in Max using Jamoma,

please see [1]. In that demonstration, an equaliser model is

created with an array of filter bands of variable size. Next,

a series of views are developed for displaying frequency

response of the equaliser, and for interacting with a single

filter band. Finally, all of the above is combined to provide

a compound view that demonstrate the use of several par-

allel views towards the same service, dynamic binding of

views to services, and the use of nested views. As such, the

examples demonstrates many of the functionalities, possi-

bilities and benefits that MVC separation offers.

MVC separation is also beneficial with respect to auto-

mated testing. The development of Jamoma relies heavily

on such testing during each C++ build, as well as imple-

mentation testing in Max [18]. Non-visual objects are usu-
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ally easier to test than visual ones, and separating model

and view allows to test model logics without having to

script GUI updates [14]. In the future, we anticipate that

MVC separation will make it easier to develop model and

intra-model integration tests.

The need to refactor Jamoma for MVC separation has

been motivated by its developers own artistic and research

practises. During the alpha development of Jamoma 0.6,

it has been used for a number of large artistic projects in

France and Norway, including works developed at GMEA,

BEK, by The Baltazars and a new stage production cur-

rently in development by Verdensteatret.

Jamoma 0.6 is scheduled for release during the summer

of 2014. It requires Max 6.1 or higher, and is distributed as

a downloadable package 6 . Externals are currently avail-

able for Mac OSX only, however we invite assistance from

experienced Windows developers to help in making it avail-

able for this platform.
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