
Fine-tuned Control of Concatenative Synthesis with CATART
Using the BACH Library for MAX

Aaron Einbond

HUSEAC

Harvard University

Christopher Trapani

CMC

Columbia University

Andrea Agostini

HES-SO

Geneva

Daniele Ghisi

HES-SO

Geneva

Diemo Schwarz

IRCAM–CNRS–UPMC

Paris

ABSTRACT

The electronic musician’s toolkit is increasingly character-

ized by fluidity between software, techniques, and genres.

By combining two of the most exciting recent packages

for MAX, CATART corpus-based concatenative synthesis

(CBCS) and BACH: AUTOMATED COMPOSER’S HELPER,

we propose a rich tool for real-time creation, storage, edit-

ing, re-synthesis, and transcription of concatenative sound.

The modular structures of both packages can be advanta-

geously recombined to exploit the best of their real-time

and computer-assisted composition (CAC) capabilities.

After loading a sample corpus in CATART, each grain, or

unit, played from CATART is stored as a notehead in the

bach.roll object along with its descriptor data and granu-

lar synthesis parameters including envelope and spatializa-

tion. The data is attached to the note itself (pitch, velocity,

duration) or stored in user-defined slots than can be ad-

justed by hand or batch-edited using lambda-loops. Once

stored, the contents of bach.roll can be dynamically edited

and auditioned using CATART for playback. The results

can be output as a sequence for synthesis, or used for CAC

score-generation through a process termed Corpus-Based

Transcription: rhythms are output with bach.quantize and

further edited in bach.roll before export as a MUSICXML

file to a notation program to produce a performer-readable

score. Together these techniques look toward a concatena-

tive DAW with promising capabilities for composers, im-

provisers, installation artists, and performers.

1. INTRODUCTION

Corpus-based concatenative synthesis methods (CBCS) [1]

are more and more often used in various contexts of mu-

sic composition, live performance, audio-visual sound de-

sign, and installation. They take advantage of the rich

and ever larger audio databases increasingly available to-

day to assemble sounds by interactive real-time or off-line

content-based selection and concatenation. Fixed record-

ings or live-recorded audio are used to constitute the cor-

pus, which makes the richness and fine details of the orig-

inal sounds available for musical expression.

In parallel, composers have increasingly made use of

computer sketching tools not only to produce work with

Copyright: ©2014 Aaron Einbond et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

an electronic component, but also work that will take an in-

strumental form. This includes programs designed specif-

ically for the purpose of computer-assisted composition

(CAC) like OPENMUSIC [2], PWGL [3], or the BACH

package for MAX [4, 5]. It also includes programs de-

signed primarily for other uses, like Digital Audio Work-

stations (DAWs), repurposed by composers to collage and

model instrumental samples with an acoustic score-based

goal.

However, tools taking advantage of traditional music no-

tation, with possibilities for fine-tuned detail and editing,

have generally remained separate from tools that offer a

comparable level of control for audio synthesis. By com-

bining concatenative synthesis with a flexible CAC pack-

age like BACH, we can propose an advanced sketching

tool for composers of both instrumental and electronic

music. Corpus-based concatenative synthesis techniques

like CATART rely on audio features (or descriptors) to

control synthesis at a high level [6]. These same audio

features lend themselves to detailed music notation and

CAC possibilities. CATART’s descriptor data can inter-

act with BACH’s notation-based interface to benefit from

the best of both worlds. Like a high-powered sampler, all

of the synthesis parameters can be stored and edited dy-

namically. However unlike a traditional sampler, CATART

offers vastly richer possibilities for the organization of a

dense sample micro-montage.

2. PREVIOUS AND RELATED WORK

Some efforts have already been made for fine control of

granular micro-montage composition and concatenative

synthesis in a sequencer-like environment.

Carlos Caires presented the granular synthesizer IRIN in

MAX with sequencing, spatialization, and micro-editing of

the generated random sequences, at each of three levels

(micro, meso, macro) [7], constructed under the supervi-

sion of composer Horacio Vaggione.

Diemo Schwarz added MIDI output of generated grain

sequences and playback capabilities to CATART for the

composition of the installation soundtrack Trowel and Seal

(2008) in an external sequencer. Grains were represented

as MIDI notes, their velocities would modify gain, and all

transformation parameters were coded as control changes.

However the limitations of the MIDI standard led to aban-

doning this approach. For instance, the grains’ UnitID rep-

resentation as notes stipulates distributing them over the

16 MIDI channels, but the resulting maximum number of

grains (128 · 16 = 2048) is still too small for working with

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1037 -

http://creativecommons.org/licenses/by/3.0/

large corpora. Further, the control change representation

of transformation parameters means they are dissociated

from the grains they act upon, as well as lose precision,

being mapped and quantized to 7 bit integers.

Instead the present implementation relies on two of

the most exciting packages recently developed for MAX:

CATART and BACH.

2.1 CATART

Corpus-based concatenative synthesis (CBCS) is based on

segmentation and description of the timbral characteristics

of the sounds in a database or corpus, and synthesis by

selection of sound segments from the database matching

sound characteristics given by the user. It allows one to

explore a corpus of sounds interactively or by composing

paths in the descriptor space, and to recreate novel tim-

bral evolutions. CBCS can also be seen as a content-based

extension of granular synthesis, providing direct access to

specific sound characteristics.

It has been implemented in various systems and environ-

ments (see overviews of past [8] and present 1 approaches

to CBCS) and notably in the interactive sound synthesis

system CATART [6].

The CATART software system for MAX realizes corpus-

based concatenative synthesis in real-time. It is a modu-

lar system based on the freely available FTM&CO exten-

sions 2 [9], providing optimized data structures and oper-

ators in a real-time object system. CATART is released as

free open source software. 3 There is also a standalone

application version of CATART available, 4 and a new ver-

sion based on the MUBU library 5 for MAX [10].

In addition to its capabilities for real-time synthesis,

CATART has been used effectively for real- and deferred-

time audio mosaicing and computer-assisted composi-

tion [11]. In both cases, a live or recorded audio input

target is analyzed and compared to a preloaded corpus ac-

cording to descriptors chosen and weighted by the user.

This process may be termed “Corpus-Based Transcription”

and the goal is to create a mosaic of samples form the cor-

pus that best approximates one or more audio features of

the target.

2.2 BACH

BACH is a library for MAX intended to bring CAC into

the real-time world [4, 5]. The basic idea behind BACH

is that symbolic score generation and modification is not

necessarily an out-of-time activity: it can follow the com-

poser’s discovery process in real-time and adapt accord-

ingly. BACH’s hierarchic representation of data is directly

inspired by the most common Lisp-based CAC environ-

ments such as OPENMUSIC [2] or PWGL [3]. BACH’s

nested lists, where hierarchies are defined via levels of

parentheses, are indeed called lllls, an acronym for Lisp-

like linked lists; see Figure 1 for an example. At the same

1 http://imtr.ircam.fr/imtr/Corpus-Based Sound Synthesis Survey
2 http://ftm.ircam.fr
3 http://ismm.ircam.fr/catart
4 http://forumnet.ircam.fr/product/catart-standalone
5 http://ismm.ircam.fr/mubu/

time, BACH’s approach to CAC takes direct inspiration

from a digital signal processing model and applies such

ideas to notes, chords, scores, and symbols in general.

At the center of the BACH environment are two score ed-

itors, bach.roll and bach.score, which provide flexible in-

terfaces for the representation and modification of musical

content. bach.roll expresses time in terms of absolute tem-

poral units (namely milliseconds), while bach.score ex-

presses time in terms of traditional musical units, and in-

cludes notions such as rests, measures, time signature and

tempo. Each notation editor is equipped with advanced

representation features such as support for microtonal ac-

cidentals of arbitrary resolution, variable play rate, and the

possibility to associate custom meta-data to notes (see sec-

tion 3.3). Moreover, editing can be performed both through

the interface and with messages, which makes bach.roll

and bach.score suitable for advanced real-time score han-

dling.

3. ADVANCED RECOMBINATION OF MODULES

In order efficiently to implement CBCS with CATART and

BACH, high-level capabilities of each system must be lever-

aged for the best performance.

3.1 Real-time BACH Usage

BACH is distinguished from other CAC tools by its real-

time capabilities, therefore efficiency and cost are primary

concerns. However as bach.roll and bach.score also sup-

port the flexibility of a user-friendly interface, they are

not the most efficient by default. When real-time perfor-

mance is a priority, several parameters can be disabled for

optimization—undo, redraw during playback, and display

of mouse-over legends—by setting the respective parame-

ters maxundosteps, highlightplay, and legend to 0.

3.2 Lambda Loops

In computer programming it is often useful to combine two

functions, operators, or objects in order to represent a spe-

cific sub-class of a wider process. Different programming

languages offer different constructs to do this, and Lisp’s

lambda functions are probably among the most specific,

powerful, and elegant. They are particularly relevant in the

field of CAC because of the use of Lisp-based program-

ming systems. MAX does not explicitly include such a

concept; however its underlying callback-based structure

easily allows the addition of a similar functionality to ex-

ternals as well as abstractions. Several BACH modules, es-

pecially those implementing iteration-based operations, re-

turn single elements (proposals) from their rightmost out-

let or outlets and expect an immediate return value for that

proposal in their rightmost inlet. For example, an object

filtering out elements from a list will propose elements one

by one, and for each of them expect a return value ex-

pressing acceptance or refusal; an object sorting a list will

propose pairs of elements, and for each pair expect a re-

turn value stating whether the pair is in the desired order

or not. Return values are not always booleans: for exam-

ple, the bach.mapelem abstraction proposes list elements

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1038 -

http://imtr.ircam.fr/imtr/Corpus-Based_Sound_Synthesis_Survey
http://ftm.ircam.fr
http://ismm.ircam.fr/catart
http://forumnet.ircam.fr/product/catart-standalone
http://ismm.ircam.fr/mubu/

Figure 1: A simple example of a lambda loop:

bach.mapelem iterates the incoming list up to two levels

of depth, outputting elements from the right outlet one by

one, and accepting the modified elements in the right in-

let. The lambda loop (formed by bach.flat and bach.length)

substitutes, for each sublist found at depth 2, its length.

to be substituted by their respective return values, mimick-

ing Common Lisp’s mapcar function (see Figure 1).

The name lambda loop has been chosen to identify this

kind of conventional construct, as it is meant to provide the

BACH user with a behavior replacing Lisp’s lambda func-

tions at least for simple cases. The portion of the patch

providing this behavior begins and ends on the same ob-

ject, forming a graphical loop. The outlets and inlets meant

to be connected in a lambda loop configuration are called

respectively lambda outlets and lambda inlets. Finally, in

a well-engineered object or abstraction lambda loops never

cause stack overflows or infinite loops, as lambda inlets are

always “cold,” meaning in MAX terminology that data they

receive do not trigger subsequent callbacks.

3.3 Slots

The BACH notation objects, including bach.roll, allow a set

of meta-data to be associated with each note, organized in

containers called slots (see Figure 2). Slots are typed, cov-

ering a broad range of data structures including numbers,

text, lists, breakpoint functions, matrices, filter definitions,

and much more. Each notation object can currently sup-

port up to 30 slots per note, addressed by a numeric index

or a name. Slot types and names are global: the type and

name of the n-th slot are the same for all the notes in the

score. However, slot types and names are freely assignable,

as are most of the parameters characterizing their behavior

(such as ranges, domains, hotkeys, etc.). Slot data can be

inspected and edited both graphically and through MAX

messages. When a bach.roll object plays back the score

it contains, it outputs together with each note’s data (such

as pitch, velocity, duration) all associated slot data; this

means that bach.roll can be used as an extremely flexible

sequencer capable of driving nearly any kind of device or

process, including audio DSP processes.

4. IMPLEMENTATION

The outlines of our implementation are traced in Figure 3

and described below.

Figure 2: Each note in bach.roll stores pitch in MIDIcents,

onset, duration, velocity, and a list of further synthesis data

and metadata contained in slots. The image shows an open

slot window, containing a breakpoint function.

Figure 3: Flowchart for transcription, sequencing, and no-

tation with CATART and BACH.

4.1 Recording CATART Synthesis with BACH

CATART is stocked with a corpus of audio, and syn-

thesis is performed through gestural control of catart.lcd

(with a mouse, tablet, or other controller), direct query-

ing of catart.select according to a desired descriptor (like

NoteNumber) or querying by a sequence of descriptors in

time (as in an audio mosaicing task). Each CATART grain

is stored in a bach.roll “score” as a notehead with its as-

sociated descriptors. The displayed pitch corresponds ei-

ther to CATART’s pitch estimate (NoteNumber) or to the

pitch meta-data imported from sample filename (the user-

defined descriptor FilenameNoteNumber).

Further synthesis parameters are recorded directly to

bach.roll: onset, determined by the time elapsed since the

start of transcription; velocity, converted from CATART’s

Loudness estimate; and duration, corresponding to the per-

formed length of the grain (which may differ from the

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1039 -

Figure 4: A CATART unit is stored as a note in bach.roll

including descriptor data contained in slots. In the first im-

age slot contents are displayed as values attached to the

note, while the second shows a slot window open for edit-

ing, in this case a floating point slider controlling gain.

length segmented by CATART on import).

On playback, the score represented by BACH is played

sequentially, and each note will trigger one grain in CATA-

RT transformed according to the parameters represented

by and attached to the note using BACH slots. Grains are

spatialized according to parameters saved in slots as well.

4.2 Filling Slots

We use BACH slots to store the identification and playback

parameters of each CATART grain: most importantly Uni-

tID, the grain’s unique index in the corpus, which can be

used by CATART to look up any of the grain’s stored de-

scriptor data. Further granular synthesis parameters may

also be stored in slots: as these are chosen dynamically

by the CATART user during synthesis, they cannot be oth-

erwise retrieved from CATART’s stored descriptor values.

These parameters include azimuth (in degrees), attack and

release times (ms), gain (dB), and reverse flag (0 or 1).

While CATART allows the user to select random granu-

lar synthesis parameters by specifying the random varia-

tion of grain length, transposition, gain, and panning, we

prefer to set these values to 0 and instead control them di-

rectly outside of CATART. This allows the data recorded

from CATART in bach.roll to be completely reproducible

on playback (see Figure 4).

4.3 Live Editing of bach.roll

The bach.roll object offers a range of intuitive possibili-

ties for editing CATART’s transcribed output. Notes can

be deleted, dragged vertically for transposition or horizon-

tally to change onset times. Durations can be lengthened or

shortened by resizing the tails of each notehead. A selec-

tion of bach.roll can be shifted or stretched (in time or in

pitch) by using dilation rectangles (see Figure 5). They are

obtained by selecting a portion of bach.roll and pressing

the Command (Macintosh) or Control (Windows) key be-

fore releasing the mouse button. All of these changes take

effect on playback. Significantly, the stored and manually

edited transposition and duration are independent of the

separately stored NoteNumber and Duration of the CATA-

Figure 5: The dilation rectangle allows musical content to

be stretched in pitch or time.

RT units themselves, allowing for comparison of the de-

sired values with the original sample.

4.4 Batch Editing

Beyond pitches and onsets that can be graphically edited

with the dilation rectangle, other granular synthesis param-

eters can be batch-edited using lambda loops. Any of the

stored playback data or slot values may be altered by either

a uniform addition or a percentage change. This is particu-

larly useful to refine envelope shapes, gain, and spatializa-

tion parameters post-synthesis. 6

4.5 Playback

Playback takes advantage of the native sequencing capabil-

ities of the bach.roll object. As each note in the roll is trig-

gered, its associated data is unpacked and sent to CATA-

RT’s synthesis module. The recorded playback parameters

are reproduced before sending the UnitID as the final step,

triggering the playback of the corresponding grain.

5. MUSICAL RESULTS

5.1 Generating an Orchestral Score

Using CATART and BACH, a full orchestral score can now

be automatically generated, subjectively edited, and effi-

ciently exported to a music notation program for further

alteration. To this end, a corpus of orchestral samples is

imported into CATART, which is then used to synthesize

a concatenative montage. The montage could be produced

using a gestural controller like a mouse or drawing tablet,

or it could be the result of an audio mosaic where audio

descriptors are compared to a target sound (Corpus-Based

Transcription, see section 2.1), for example an ambient

field recording. Whatever the source, the CATART syn-

thesis is recorded in bach.roll and saved for further manip-

ulation.

5.1.1 Targeted Transposition

For contexts in which pitch-based sounds are favored, tar-

geted transposition mode can be activated, in which CATA-

RT transposes each unit to match a targeted NoteNumber.

As mentioned above, bach.roll stores information to re-

trieve both the original pitch of the sample as well as the

transposed pitch, so the user can make further adjustments.

6 A demonstration of these editing possibilities can be viewed at
https://vimeo.com/90281614.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1040 -

https://vimeo.com/90281614

5.1.2 bach.score and bach.quantize

After subjectively editing the data in bach.roll,

bach.quantize is used to transcribe the sequence into

traditional rhythmic notation with bach.score. At each

stage, the roll or score can be played back in real-time

through CATART, allowing immediate evaluation of the

sonic results. Individual notes or units can also be played

back one at a time (by highlighting the note and pressing

“v” for evaluate and using the Command or Control key

plus the arrow keys to navigate between adjacent notes)

for detailed listening to individual samples. Before the

quantization step, notes can be moved and distributed to

different staves, for example to divide material between

multiple instrumental parts. bach.quantize then presents

several advantages over its predecessor in OPENMUSIC,

including handling of grace notes, the possibility to define

the minimal units of the quantization adaptively depending

on the density of musical events, and accommodation of

contrapuntal tempo changes including accelerandi and

decelerandi. 7

5.1.3 MUSICXML Export

From bach.score, the message exportxml exports the data

to a MUSICXML file readable by notation programs FI-

NALE and SIBELIUS. Upon import further subjective edit-

ing is necessary to produce a performance-ready score,

for example by adding human-readable dynamics, per-

formance technique text, and other indications not ade-

quately exported through MUSICXML. However the pro-

cess is much accelerated compared to export with MIDI

or by hand. This process was used to produce Aaron Ein-

bond’s Endangered Sound, five pieces for orchestra with

field recordings (2013).

5.2 bach.roll as a Sequencer

Stored bach.roll objects also permit detailed control of

synthesis, analogous to a highly flexible sequencer with

fine control of playback and synchronization with real-time

processes.

5.2.1 SoundSet Control

CATART is capable of dividing corpora into multiple

SoundSets, groups of units that correspond to user-defined

criteria such as instrument, source type, or source direc-

tory. The soundset-control module allows these groups

of samples to be enabled or disabled, as well as for sep-

arate synthesis parameters to be applied to each SoundSet

(see Figure 6). The possibility of altering envelope, gain,

and spatialization parameters for subsets of the corpus, as

well as for dynamic interpolations between these settings,

allows for a much more detailed control over the synthe-

sized result. SoundSets can be automatically segregated

into separate staves in bach.roll, for a clear visualization of

CATART’s output, and facilitating the independent editing

of slots corresponding to each SoundSet.

7 For a demonstration of this process from synthesis to quantization,
please see https://vimeo.com/89840740.

Figure 6: A soundset-control module allows granular syn-

thesis parameters for separate SoundSets to be edited and

stored for playback.

5.2.2 Spatialization

For spatialization purposes, we record for each unit an

azimuth value, corresponding to the panning position, as

well as a standard deviation value. This allows a stored

bach.roll to be compatible with multiple spatialization

modules and configurations. The multichannel synthesis

module distributed with CATART (catart.synthesis.multi~)

receives for each unit a list of amplitudes for all output

channels, as output by the spatializing tool vbap, and out-

puts to the GABOR overlap–add object (gabor.ola~) to con-

trol the spatial position of an arbitrary number of simulta-

neous grains. These tools were central to the composition

of Christopher Trapani’s Writing Against Time for two pi-

anos, two percussionists and live electronics (2014).

With the change of a few arguments, the multichannel

output can be reconfigured to accommodate a new setup,

with the same bach.roll providing spatialization data. This

adaptability is a major advantage over performing with

multichannel soundfiles, avoiding the need to re-render in

the new speaker configuration. Further spatialization pa-

rameters, for vbap or other tools, such as distance, spread,

and elevation, could also be stored in slots.

6. CONCLUSIONS

6.1 Advantages of Real-time

Combining tools conceived for CAC and live concatena-

tive synthesis in a single streamlined process, the distinc-

tion between real- and deferred-time applications begins

to blur. Our results point toward a corpus-based concate-

native DAW, allowing both high-level control of synthesis

and a convenient user interface. The speed with which the

user can audition, edit, and re-audition audio, from single

grains to long sequences, offers dynamic feedback for a

creative workflow where listening takes a central role.

In the context of fixed-electronic synthesis, BACH stor-

age presents several advantages over writing the results of

CATART synthesis directly to sfrecord~. The bach.roll ob-

ject allows spatialization data to be easily written, stored,

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1041 -

https://vimeo.com/89840740

and adapted to new speaker setups without the necessity to

re-render soundfiles. Further, live concatenative synthesis

allows for a flexibility in playback of a micro-montage of

samples that cannot be achieved with bounced soundfiles.

As the attack and decay of each unit in bach.roll is con-

trolled separately, it is possible to interrupt playback in the

middle of a sequence allowing the sounded units to decay

naturally, an effect that cannot be easily simulated with a

pre-mixed montage.

6.2 Further Directions

Several developments could improve the processes of tran-

scription and synthesis further: first, more use could be

made of the advanced capabilities of BACH slots. For ex-

ample in the case of synthesis, rather than relying upon

CATART’s attack and release parameters, a fully-editable

break-point function (BPF) like that shown in Figure 2

could be used to shape the envelopes of grains for play-

back.

Or in the case of corpus-based transcription, better use

could be made of the contents of slots upon export to MU-

SICXML: meta-data associated with grains such as file-

name or directory could be included, giving access to im-

portant annotations like instrumental performance tech-

nique. This meta-data could then be mapped to noteheads,

articulations, or other symbols, speeding the score editing

process once the file reaches FINALE.

To expand sequencing possibilities, the playback of

bach.roll objects could be coordinated with the MAX

transport object to join with other time-based MAX ob-

jects in a consistent way. Further, our technique could be

used with other existing score-based techniques such as

score-following. In an initial test with Antescofo compar-

ing a pre-loaded score to a live performance, detected notes

were recorded in bach.roll along with tempo and certainty

parameters stored as slot values. In addition to providing

a recorded graphical verification of real-time score follow-

ing performance, this also suggests more advanced recom-

bination possibilities.

Finally, the powerful combination of CATART and BACH

could be integrated into a more extensive Feature Mod-

ulation Synthesis framework as proposed in [12], where

not only pitch, dynamics, and spatialization, but other de-

scriptors like SpectralCentroid could be adaptively altered

to desired targets for re-synthesis.

Acknowledgments

The work presented here was partially funded by the

Agence Nationale de la Recherche within the project Topo-

phonie, ANR-09-CORD-022.

7. REFERENCES

[1] D. Schwarz, “Corpus-based concatenative synthesis,”

IEEE Signal Processing Magazine, vol. 24, no. 2, pp.

92–104, 2007, special Section: Signal Processing for

Sound Synthesis.

[2] G. Assayag et al., “Computer assisted composition at

Ircam: From patchwork to OpenMusic,” Computer

Music Journal, no. 23 (3), pp. 59–72, 1999.

[3] M. Laurson, M. Kuuskankare, and V. Norilo, “An

overview of PWGL, a visual programming environ-

ment for music,” Computer Music Journal, vol. 33,

no. 1, 2009.

[4] A. Agostini and D. Ghisi, “bach: an environment

for computer-aided composition in Max,” in Proceed-

ings of the International Computer Music Conference,

Ljubljana, Slovenia, 2012.

[5] ——, “Real-time computer-aided composition with

bach,” Contemporary Music Review, vol. 32, no. 1, pp.

41–48, 2013.

[6] D. Schwarz, G. Beller, B. Verbrugghe, and S. Brit-

ton, “Real-Time Corpus-Based Concatenative Synthe-

sis with CataRT,” in Proceedings of the COST-G6 Con-

ference on Digital Audio Effects (DAFx), Montreal,

Canada, 2006.

[7] C. Caires, “Irin: Micromontage in graphical sound

editing and mixing tool,” in Proceedings of the Inter-

national Computer Music Conference, Miami, Florida,

2004.

[8] D. Schwarz, “Concatenative sound synthesis: The

early years,” Journal of New Music Research, vol. 35,

no. 1, pp. 3–22, 2006.

[9] N. Schnell, R. Borghesi, D. Schwarz, F. Bevilacqua,

and R. Müller, “FTM—Complex Data Structures for

Max,” in Proceedings of the International Computer

Music Conference, Barcelona, Spain, 2005.

[10] N. Schnell, A. Röbel, D. Schwarz, G. Peeters, and

R. Borghesi, “MuBu & friends—assembling tools for

content based real-time interactive audio processing in

Max/MSP,” in Proceedings of the International Com-

puter Music Conference, Montreal, Canada, 2009.

[11] A. Einbond, D. Schwarz, and J. Bresson, “Corpus-

based transcription as an approach to the compositional

control of timbre,” in Proceedings of the International

Computer Music Conference, Montreal, Canada, 2009.

[12] A. Einbond, C. Trapani, and D. Schwarz, “Precise

pitch control in real time corpus-based concatenative

synthesis,” in Proceedings of the International Com-

puter Music Conference, Ljubljana, Slovenia, 2012.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1042 -

