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ABSTRACT

Timbre and emotion are two of the most important as-

pects of musical sounds. Both are complex and multi-

dimensional, and strongly interrelated. Previous research

has identified many different timbral attributes, and shown

that spectral centroid and attack time are the two most im-

portant dimensions of timbre. However, a consensus has

not emerged about other dimensions. This study will at-

tempt to identify the most perceptually relevant timbral

attributes after spectral centroid and attack time. To do

this, we will consider various sustained musical instrument

tones where spectral centroid and attack time have been

equalized. While most previous timbre studies have used

discrimination and dissimilarity tests to understand timbre,

researchers have begun using emotion tests recently. Pre-

vious studies have shown that attack and spectral centroid

play an essential role in emotion perception, and they can

be so strong that listeners do not notice other spectral fea-

tures very much. Therefore, in this paper, to isolate the

third most important timbre feature, we designed a subjec-

tive listening test using emotion responses for tones equal-

ized in attack, decay, and spectral centroid. The results

showed that the even/odd harmonic ratio is the most salient

timbral feature after attack time and spectral centroid.

1. INTRODUCTION

Timbre is one of the most important aspects of musical

sounds, yet it is also the least understood. It is often sim-

ply defined by what it is not: not pitch, not loudness, and

not duration. For example, if a trumpet and clarinet both

played A440Hz tones for 1s at the same loudness level,

timbre is what would distinguish the two sounds. Timbre

is known to be multidimensional, with attributes such as

attack time, decay time, spectral centroid (i.e., brightness),

and spectral irregularity to name a few.

Several previous timbre perception studies have shown
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spectral centroid and attack time to be highly correlated

with the two principal perceptual dimensions of timbre.

Spectral centroid has been shown to be strongly correlated

with one of the most prominent dimensions of timbre as

derived by multidimensional scaling (MDS) experiments

[1, 2, 3, 4, 5, 6, 7, 8].

Grey and Gordon [1, 9] derived three dimensions cor-

responding to spectral energy distribution, temporal syn-

chronicity in the rise and decay of upper harmonics, and

spectral fluctuation in the signal envelope. Iverson and

Krumhansl [4] found spectral centroid and critical dynamic

cues throughout the sound duration to be the salient dimen-

sions. Krimphoff [10] found three dimensional correlates:

(1) spectral centroid, (2) rise time, and (3) spectral flux cor-

responding to the standard deviation of the time-averaged

spectral envelopes. More recently, Caclin et al. [8] found

attack time, spectral centroid, and spectrum fine structure

to be the major determinates of timbre through dissimilar-

ity rating experiments. Spectral flux was found to be a less

salient timbral attribute in this case.

While most researchers agree spectral centroid and attack

time are the two most important timbral dimensions, no

consensus has emerged about the best physical correlate

for a third dimension of timbre. Lakatos and Beauchamp

[7, 11, 12] suggested that if additional timbre dimensions

exist, one strategy would be to first create stimuli with

identical pitch, loudness, duration, spectral centroid, and

rise time, but which are otherwise perceptually dissimilar.

Then, potentially multidimensional scaling of listener dis-

similarity data can reveal additional perceptual dimensions

with strong correlations to particular physical measures.

Following up this suggestion is the main focus of this pa-

per.

While most previous timbre studies have used discrimi-

nation and dissimilarity to understand timbre, researchers

have recently begun using emotion. Some previous stud-

ies have shown that emotion is closely related to timbre.

Scherer and Oshinsky found that timbre is a salient factor

in the rating of synthetic tones [13]. Peretz et al. showed

that timbre speeds up discrimination of emotion categories

[14]. Bigand et al. reported similar results in their study of

emotion similarities between one-second musical excerpts

[15]. It was also found that timbre is essential to musical

genre recognition and discrimination [16, 17, 18]. Eerola
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[19] carried out listening tests to investigate the correla-

tion of emotion with temporal and spectral sound features.

The study confirmed strong correlations between features

such as attack time and brightness and the emotion di-

mensions valence and arousal for one-second isolated in-

strument tones. Valence and arousal are measures of how

positive and energetic the music sounds [20]. Despite the

widespread use of valence and arousal in music research,

composers may find them rather vague and difficult to in-

terpret for composition and arrangement, and limited in

emotional nuance. Using a different approach than Eerola,

Ellermeier et al. investigated the unpleasantness of envi-

ronmental sounds using paired comparisons [21]. Emotion

categories have been shown to be generally congruent with

valence and arousal in music emotion research [22].

In our own previous study on emotion and timbre [23],

to make the results intuitive and detailed for composers,

listening test subjects compared tones in terms of emotion

categories such as Happy and Sad. We also equalized the

stimuli attacks and decays so that temporal features would

not be factors. This modification allowed us to isolate the

effects of spectral features such as spectral centroid. Av-

erage spectral centroid significantly correlated for all emo-

tions, and a bigger surprise was that spectral centroid de-

viation significantly correlated for all emotions. This cor-

relation was even stronger than average spectral centroid

for most emotions. The only other correlation was spectral

incoherence for two emotions.

Since average spectral centroid and spectral centroid de-

viation were so strong, listeners did not notice other spec-

tral features much. This made us wonder: if we equalized

average spectral centroid in the tones, would spectral inco-

herence be more significant? Would other spectral charac-

teristics emerge as significant? To answer these questions,

we conducted the follow-up experiment described in this

paper using emotion responses for tones equalized in at-

tack, decay, and spectral centroid.

2. LISTENING TEST

In our listening test, listeners compared pairs of eight in-

struments for eight emotions, using the tones that were

equalized for attack, decay, and spectral centroid.

2.1 Stimuli

2.1.1 Prototype instrument sounds

The stimuli consisted of eight sustained wind and bowed

string instrument tones: bassoon (Bs), clarinet (Cl), flute

(Fl), horn (Hn), oboe (Ob), saxophone (Sx), trumpet (Tp),

and violin (Vn). They were obtained from the McGill and

Prosonus sample libraries, except for the trumpet, which

had been recorded at the University of Illinois at Urbana-

Champaign School of Music. All the tones were used in a

discrimination test carried out by Horner et al. [24], six of

them were also used by McAdams et al. [25], and all of

them used our previous emotion-timbre test [23].

The tones were presented in their entirety. The tones were

nearly harmonic and had fundamental frequencies close to

311.1 Hz (Eb4). The original fundamental frequencies de-

viated by up to 1 Hz (6 cents), and were synthesized by

additive synthesis at 311.1 Hz.

Since loudness is potential factor in emotion, amplitude

multipliers were determined by the Moore-Glasberg loud-

ness program [26] to equalize loudness. Starting from a

value of 1.0, an iterative procedure adjusted an amplitude

multiplier until a standard loudness of 87.3 ± 0.1 phons

was achieved.

2.2 Stimuli Analysis and Synthesis

2.2.1 Spectral Analysis Method

Instrument tones were analyzed using a phase-vocoder al-

gorithm, which is different from most in that bin frequen-

cies are aligned with the signal’s harmonics (to obtain ac-

curate harmonic amplitudes and optimize time resolution)

[27]. The analysis method yields frequency deviations be-

tween harmonics of the analysis frequency and the corre-

sponding frequencies of the input signal. The deviations

are approximately harmonic relative to the fundamental

and within ± 2% of the corresponding harmonics of the

analysis frequency. More details on the analysis process

are given by Beauchamp [27].

2.2.2 Temporal Equalization

Temporal equalization was done in the frequency domain.

Attacks and decays were first identified by inspection of

the time-domain amplitude-vs.-time envelopes, and then

harmonic amplitude envelopes corresponding to the attack,

sustain, and decay were reinterpolated to achieve an attack

time of 0.05s, a sustain time of 1.9s, and a decay time of

0.05s, for a total duration of 2.0s.

2.2.3 Spectral Centroid Equalization

Different from our previous study [23], we equalized the

average spectral centroid of the the stimuli to see whether

other significant features would emerge. Average spectral

centroid was equalized for all eight instruments. The spec-

tra of each instrument was modified to an average spec-

tral centroid of 3.7, which was the mean average spectral

centroid of the eight tones. This modification was accom-

plished by scaling each harmonic amplitude by its har-

monic number raised to a to-be-determined power:

Ak(t)← kpAk(t) (1)

For each tone, starting with p = 0, p was iterated using

Newton’s method until an average spectral centroid was

obtained within ±0.1 of the 3.7 target value.

2.2.4 Resynthesis Method

Stimuli were resynthesized from the time-varying har-

monic data using the well-known method of time-varying

additive sinewave synthesis (oscillator method) [27] with

frequency deviations set to zero.

Proceedings ICMC|SMC|2014          14-20 September 2014, Athens, Greece

- 929 -



2.3 Subjects

32 subjects without hearing problems were hired to take

the listening test. They were undergraduate students and

ranged in age from 19 to 24. Half of them had music train-

ing (that is, at least five years of practice on an instrument).

2.4 Emotion Categories

As in our previous study [23], the subjects compared the

stimuli in terms of eight emotion categories: Happy, Sad,

Heroic, Scary, Comic, Shy, Joyful, and Depressed. These

terms were selected because we considered them the most

salient and frequently expressed emotions in music, though

there are certainly other important emotion categories in

music (e.g., Romantic). In picking these eight emotion cat-

egories, we particularly had dramatic musical genres such

as opera and musicals in mind, where there are typically

heroes, villians, and comic-relief characters with music

specifically representing each. Their ratings according to

the Affective Norms for English Words [28] are shown in

Figure 1 using the Valence-Arousal model. Happy, Joy-

ful, Comic, and Heroic form one cluster and Sad and De-

pressed another.
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Figure 1. Russel’s Valence-Arousal emotion model. Va-

lence is how positive an emotion is. Arousal is how ener-

getic an emotion is.

2.5 Listening Test Design

Every subject made pairwise comparisons of all eight in-

struments. During each trial, subjects heard a pair of tones

from different instruments and were prompted to choose

which tone more strongly aroused a given emotion. Each

combination of two different instruments was presented in

four trials for each emotion, and the listening test totaled

C8

2
× 4 × 8 = 896 trials. For each emotion, the overall

trial presentation order was randomized (i.e., all the Happy

comparisons were first in a random order, then all the Sad

comparisons were second, ...).

Before the first trial, the subjects read online definitions

of the emotion categories from the Cambridge Academic

Content Dictionary [29]. The listening test took about 1.5

hours, with breaks every 30 minutes.

The subjects were seated in a “quiet room” with less than

40 dB SPL background noise level. Residual noise was

mostly due to computers and air conditioning. The noise

level was further reduced with headphones. Sound signals

were converted to analog by a Sound Blaster X-Fi Xtreme

Audio sound card, and then presented through Sony MDR-

7506 headphones at a level of approximately 78 dB SPL,

as measured with a sound-level meter. The Sound Blaster

DAC utilized 24 bits with a maximum sampling rate of 96

kHz and a 108 dB S/N ratio.

3. RESULTS

3.1 Quality of Responses

The subjects’ responses were first screened for inconsis-

tencies, and two outliers were filtered out. Consistency

was defined based on the four comparisons of a pair of in-

struments A and B for a particular emotion as follows:

consistencyA,B =
max(vA, vB)

4
(2)

where vA and vB are the number of votes a subject gave

to each of the two instruments. A consistency of 1 repre-

sents perfect consistency, whereas 0.5 represents approx-

imately random guessing. The mean average consistency

of all subjects was 0.76.

Predictably subjects were only fairly consistent because

of the emotional ambiguities in the stimuli. We assessed

the quality of responses further using a probabilistic ap-

proach which has been successful in image labeling [30].

We defined the probability of each subject being an out-

lier based on Whitehill’s outlier coefficient. Whitehill et

al. [30] used an expectation maximization algorithm to es-

timate each subject’s outlier coefficient and the difficulty

of evaluating each instance, as well as the labeling of each

instance. Higher outlier coefficients mean that the subject

is more likely an outlier, which consequently reduces the

contribution of their vote toward the label. In our study,

we verified that the two least consistent subjects had the

highest outlier coefficients. Therefore, they were excluded

from the results.

We measured the level of agreement among the remain-

ing subjects with an overall Fleiss’ Kappa statistic [31].

Fleiss’ Kappa was 0.043, indicating a slight but statisti-

cally significant agreement among subjects. From this, we

observed that subjects were self-consistent but less agreed

in their responses than in our previous study [23] since the

tones sounded more similar after spectral centroid equal-

ization.

We also performed a χ2 test [32] to evaluate whether the

number of circular triads significantly deviated from the

number to be expected by chance alone. This turned out

to be insignificant for all subjects. The approximate like-

lihood ratio test [32] for significance of weak stochastic

transitivity violations [33] was tested and showed no sigif-

icance for all emotions.

3.2 Emotion Results

We ranked the spectral centroid equalized instrument tones

by the number of positive votes they received for each
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Figure 2. Bradley-Terry-Luce scale values of the spectral centroid equalized tones for each emotion.

emotion, and derived scale values using the Bradley-Terry-

Luce (BTL) model [32, 34] as shown in Figure 2. The

likelihood-ratio test showed that the BTL model describes

the paired-comparisons well for all emotions. We observe

that: 1) In general, the BTL scales of the spectral centroid

equalized tones were much closer to one another compared

to the original tones. The range of the scale considerably

narrowed to between 0.07 and 0.23 (in the original tones it

was 0.02 to 0.35). The narrower distribution of instruments

indicates an increase in difficulty for listeners to make

emotional distinctions between the spectral centroid equal-

ized tones. 2) The ranking of the instruments was different

than for the original tones. For example, the clarinet and

flute were often highly ranked for sad emotions. Also, the

horn and the violin were more neutral instruments, which

contrasts with their distinctive Sad and Happy rankings re-

spectively for the original tones. And surprisingly, the horn

was the least Sad instrument. 3) At the same time, some

instruments ranked similarly in both experiments. For ex-

ample, the trumpet and saxophone were still among the

most Happy and Joyful instruments, and the oboe was still

ranked in the middle.

Figure 3 shows BTL scale values and the corresponding

95% confidence intervals of the instruments for each emo-

tion. The confidence intervals cluster near the line of in-

difference since it was difficult for listeners to make emo-

tional distinctions. Table 1 shows the spectral character-

istics of the eight spectral centroid equalized tones (since

average spectral centroid is equalized to 3.7 for all tones, it

is omitted). Spectral centroid deviation was more uniform

than in our previous study and near 1.0. This is a side-

effect of spectral centroid equalization since deviations are

all around the same equalized value of 3.7.

Table 2 shows Pearson correlation between emotion

and the spectral features for spectral centroid equalized

tones. Even/odd harmonic ratio significantly correlated

with Happy, Sad, Joyful, and Depressed. Instruments that

had extreme even/odd harmonic ratios exhibited clear pat-

terns in the rankings. For example, the clarinet had the

lowest even/odd harmonic ratios and the saxophone the

highest. The two instruments were consistently outliers

in Figure 2 with opposite patterns. Table 2 also indicates

that listeners found the trumpet and violin less shy than

other instruments (i.e., their spectral centroid deviations

were more than the other instruments).

4. DISCUSSION

These results and the results in our previous study [23]

are consistent with Eerola’s Valence-Arousal results [19].

Both indicate that musical instrument timbres carry cues

about emotional expression that are easily and consis-

tently recognized by listeners. Both show that spectral

centroid/brightness is a significant component in music

emotion. Beyond Eerola’s findings, we have found that

even/odd harmonic ratio is the most salient timbral feature

after attack time and brightness.

For future work, it will be fascinating to see how emo-

tion varies with pitch, dynamic level, brightness, and ar-

ticulation. Do these parameters change emotion in a con-

sistent way, or does it vary from instrument to instrument?

We know that increased brightness makes a tone more dra-

matic (more happy or more angry), but is the effect more

pronounced in some instruments than others? For exam-

ple, if a happy instrument such as the violin is played softly

with less brightness, is it still happier than a sad instrument

such as the horn played loudly with maximum brightness?

At what point are they equally happy? Can we equalize the

instruments to equal happiness by simply adjusting bright-

ness or other attributes? How do the happy spaces of the

violin overlap with other instruments in terms of pitch, dy-

namic level, brightness, and articulation? In general, how

does timbre space relate to emotional space?

Emotion gives us a fresh perspective on timbre, helping

us to get a handle on its perceived dimensions. It gives

us a focus for exploring its many aspects. Just as timbre

is a multidimensional perceived space, emotion is an even

higher-level multidimensional perceived space deeper in-

side the listener.
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Figure 3. BTL scale values and the corresponding 95% confidence intervals of the spectral centroid equalized tones for

each emotion. The dotted line represents no preference.

❵
❵
❵

❵
❵
❵
❵
❵
❵
❵

Features
Emotion

Bs Cl Fl Hn Ob Sx Tp Vn

Spectral Centroid Deviation 0.9954 1.0176 1.0614 1.0132 1.0178 1.018 1.1069 1.1408

Spectral Incoherence 0.0817 0.0399 0.1341 0.0345 0.0531 0.0979 0.0979 0.1099

Spectral Irregularity 0.0967 0.1817 0.1448 0.0635 0.1206 0.1947 0.0228 0.1206

Even/odd ratio 1.3246 0.177 0.9541 0.9685 0.456 1.7591 0.81 0.9566

Table 1. Spectral characteristics of the spectral centroid equalized tones.
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❵
❵
❵
❵
❵

❵
❵

❵
❵
❵

Features
Emotion

Happy Sad Heroic Scary Comic Shy Joyful Depressed

Spectral Centroid Deviation -0.2203 -0.3516 0.5243 0.4562 0.5386 -0.7834∗∗ 0.1824 -0.3149

Spectral Incoherence 0.1083 -0.298 0.31 0.4081 0.5046 -0.2665 0.3025 -0.2373

Spectral Irregularity -0.13 0.499 -0.5082 0.2697 -0.3124 0.3419 -0.2543 0.4877

Even-odd ratio 0.8596∗∗ -0.6686∗ 0.3785 -0.018 0.4869 -0.0963 0.6879∗ -0.6575∗

Table 2. Pearson correlation between emotion and spectral characteristics for spectral centroid equalized tones. ∗∗: p <

0.05; ∗ : 0.05 < p < 0.1.
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