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ABSTRACT

A robust onset detection method has to deal with wide dy-

namic ranges and diverse transient behaviors prevalent in

real-world music signals. This paper presents contribu-

tions to robust onset detection by proposing two novel on-

set detection methods. The first one, termed power-scaled

spectral flux (PSSF), applies power scaling to the spectral

flux to better balance the wide dynamic range in the spec-

trogram. The second method, called peak-valley group-

delay (PVGD), enhances the robustness to noise terms by

detecting peak-valley pairs from the summed group-delay

function to capture the attack-decay envelope. The pro-

posed methods are evaluated on a piano dataset and a di-

verse dataset of 12 different Western and Turkish instru-

ments. To tackle the problem from a fundamental signal

processing perspective, in this study we do not consider

advanced methods such as late fusion, multi-band process-

ing, and neural networks. Experimental result shows that

the proposed methods yield competitive accuracy for the

two datasets, improving the F-score for the former dataset

from 0.956 to 0.963, and the F-score for the latter dataset

from 0.712 to 0.754, comparing to existing methods.

1. INTRODUCTION

An onset detection functions is generally designed to iden-

tify new events in an audio signal by probing the differ-

ences in the magnitude, phase angle, complex spectrum

or other feature representations. For example, spectral flux

(SF) computes the temporal differences of magnitude spec-

tra, phase deviation (PD) computes the second-order tem-

poral differences of phase angles, whereas complex domain

(CD) considers simultaneously the differences of both mag-

nitude and phase [1]. Comprehensive overview of the com-

monly used onset detection and post-processing methods

can be found in [2, 3, 4, 5]. In general, SF-based approach

is the most popular one in the literature.

The negative of phase slope with respect to frequency,

also known as the group-delay function (GDF) [6, 7, 8],

stands for the distance between the center of the analysis

window and the position of the attack-decay wavepacket,

which represents an onset event. Therefore, an onset can be
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Figure 1. Spectrogram, SF and summed GDF of two piano

semitone sequences with different dynamics. Horizontal

axis indexes time.

detected by the zero-crossing of GDF or the peak of nega-

tive GDF derivative [9, 10, 11, 12]. GDF has been found a

competitive approach using phase information, especially

when multi-band processing is applied [9, 10]. However,

studies on GDF have been relatively fewer than SF, possi-

bly due to that phase information is hard to be computa-

tionally modeled.

Comparing to GDF, SF is relatively more insensitive to

noise, windowing effects and sampling rates, but SF does

not perform well for signals with high variation of dynamic

range. On the other hand, the GDF is relatively insen-

sitive to changes in signal power, but the performance of

phase can be affected by noises and other numerical prob-

lems. An example is shown in Fig. 1, which displays

the spectrogram, SF and GDF of two succeeding semitone

sequences, both from C4 to F4. The two sequences are

played in forte (f ; ‘loud’) and piano (p; ‘soft’), respec-

tively. We see that SF is fairly sensitive to dynamics, mak-

ing it difficult to determine a decision threshold for onset

detection. In contrast, GDF is relatively scale-invariant,

but it is subject to the noisy terms in the signal and thereby

over-emphasizes some unimportant parts. These issues are

more pronounced as the type of instruments, the number

of playing techniques and the variation in the recording

environment that are under consideration increase, which

is common in real-world music signals [2, 3, 4, 5].

In this paper, we propose two improved onset detection
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methods for SF and GDF to circumvent the scaling and

robustness issues. Specifically, we add a power-scale pa-

rameter to SF to compensate for the musical dynamics,

and propose a peak-valley picking method for GDF to deal

with transient events (Section 3 and 4). Evaluation on two

onset detection datasets [13, 9] validates the effectiveness

of the proposed methods over existing methods (Section

5). Although it is interesting to combine the result of SF-

and GDF-based methods, we opt for leaving this as a fu-

ture work as a similar late-fusion approach has been shown

effective in [9].

2. BACKGROUND

In this section we introduce some well-known onset de-

tection functions (ODFs) which make use of basic sig-

nal properties such as magnitude spectra, complex spec-

tra and phase. We take three baseline ODFs, called spec-

tral flux, weighted phase deviation and the complex do-

main detection function, which have been found perform-

ing will among other basic ODFs [14]. Moreover, differ-

ence of group-delay functions is also taken into considera-

tion. Here we use the symbol “∆” or “′” to refer to differ-

ence or derivative w.r.t time but not frequency (this should

not be confused with the definition of GDF, which takes

the derivative w.r.t. frequency).

Spectral flux (SF) is arguably the most widely-used ODF.

It measures the positive changes in each frequency bin and

sums up all these changes within a frame. SF is defined as

SF (n) =

N/2
∑

k=1

H (|X(n, k) | − |X(n− 1, k) |) , (1)

where H = (X + |X|) /2 is the half-wave rectifier func-

tion. Variants of SF use either l2-norm formulation [2] or

take the logarithm magnitude log (1 + |X|) [15, 4].

Weighted phase deviation (WPD) is an improved ver-

sion of PD [3]. The ODF is obtained by summing up

the second-order difference of 2π-unwrapped phase ψ′′ for

each frame. As WPD is sensitive to noise terms intro-

duced by components with insignificant energy, a magni-

tude weighting on ψ′′ is applied to suppress the insignifi-

cant parts [3]:

WPD(n) =
1

N

N/2−1
∑

k=−N/2

|X(n, k)ψ′′ (n, k) | . (2)

Complex domain (CD). In complex domain one can jointly

incorporate phase and magnitude information instead of

processing them separately [1, 3, 2]. CD takes a steady-

state “prediction” of the current spectrum XT (n, k), which

is evolved from the preceding spectrum and its first-order

phase difference ψ′:

Y (n, k) = |X(n− 1, k) |ejψ(n−1,k)+jψ′(n−1,k) , (3)

and then obtains the ODF by calculating the differences in

the observed spectrum and the predicted one [3]:

CD(n) =

N/2−1
∑

k=−N/2

H (|X(n, k)−Y (n, k) |) . (4)

Difference of group-delay (∆GD) represents a simple

way to implement an ODF using GDF. It sums up the first-

order difference of negative GDF in each frame:

∆GD(n) = −

N/2
∑

k=1

(GDF (n, k)−GDF (n− 1, k)) .

(5)

∆GD can be viewed as a simplification of “∆GRD” (i.e.,

difference of auditory group delay) [10], which further pro-

cesses GDF in several auditory bands separately instead of

summing them directly. We will see in the experiments that

GDF-based methods are generally better than other phase-

based methods such as WPD and CD, possibly due to that

the GDF formulation in (10) avoids the requirement of

phase unwrapping, which is usually unstable under noisy

situations. Details about GDF are introduced in Section

4.1.

3. POWER-SCALED SPECTRAL FLUX (PSSF)

It has been known that a simple log-scale mapping log |X|
is not applicable as it diverges to negative infinity when |X|
is small. An alternative form log (1 + |X|) resolves this is-

sue but weakens the difference of low-energy counterparts

at the same time (note that the derivative of log (1 + |X|)
is strictly bounded between 0 and 1). Therefore, as the

dynamic range of the musical signal widens, such a log-

arithmic form is similar to linear-scaling and shows less

advantages.

Power-scale mapping is free from the drawbacks of the

two aforementioned logarithmic forms, as a power-scale

function |X|p for 0 < p ≤ 1 has bounded values and un-

bounded derivatives. The power-scaled variant of SF is

defined as

PSSF (n) =

N/2
∑

k=1

H (|X (n, k) |p − |X (n− 1, k) |p) .

(6)

The introduction of the power scale p enhances the weaker

onsets and suppresses the stronger onsets in a music signal.

As a result, PSSF will be more robust for music signals

composed of both loud sentences and weak sentences, such

as the one shown in Fig. 1(a).

Although p seems like an empirically-determined param-

eter, there is no need to try all possible values for p be-

cause the dynamic ranges of most music signals are lim-

ited. Consider an extreme case: the onset strengths of 1

violin and 1,000 violins may differ by about 30 dB; for

a common pop music, the dynamic range is usually 6–10

dB, according to some informal studies. Therefore, setting

p = 0.5 should be enough for most cases as this reduces

the dynamic range to less than 3 dB (cf. Section 5).

4. PEAK-VALLEY GROUP-DELAY (PVGD)

4.1 Group-delay and onset detection

We begin with an introduction of group-delay and its re-

lation to onset. Consider a musical note as a mixture of
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Figure 2. A conceptual diagram on the relation among

the time-domain signal, attack-decay wavepacket, analysis

window and group-delay.

wavepackets with the corresponding ADSR (attack, decay,

sustain, and release) envelopes and their carrier frequen-

cies. It is well-known that GDF describes the delay of

a wavepacket, whereas the phase-delay describes the de-

lay of a carrier [16, 8]. Specifically, GDF describes the

relative position between the wavepacket and the analysis

window. As an onset event is mostly characterized by the

attack-decay sub-envelopes, or transients [2], it is possible

to describe an onset event by GDF.

Fig. 2 shows a band-limited signal modeled with its tran-

sient envelope with a series of analysis windows. At time

tA, the window function covers the attack envelope on the

right-hand side, and the window function can measure a

positive group-delay for this wavepacket at this time. At

time tB the window function covers the end of decay phase

in its left-hand side, implying a time advance of analysis

window to the wavepacket and therefore a negative group-

delay (i.e., beneath the horizontal dashed line). The onset

event is thus between the peak and valley of the GDF. For

those signals with weak decay envelope like most of the

string and wind instruments, the valleys of the GDF also

become weak, but still can be identified through peak pick-

ing. As the valley becomes weak, the proposed method

reduces to ∆GD method (see Section 2). This method is

unable to identify the signal with no ‘decay’ counterpart,

such as an ideal Heaviside function, or a crescendo note.

Note that the onset of a crescendo note is also difficult to

be detected by other methods.

GDF can be computed directly from the short-time Fourier

transform (STFT). Consider a general representation of STFT

of a time-domain signal x (t):

Shx (t, ω) =

∫ ∞

−∞

x (τ)h∗ (τ − t) e−jωτdτ (7)

= Mh
x (t, ω) e

jΦh

x
(t,ω) , (8)

where Shx (t, ω) ∈ C is the two-dimensional STFT rep-

resentation on time-frequency plane, h (t) is the window

function, Mh
x (t, ω) and Φhx (t, ω) of Eq. (8) represent the

amplitude and phase, respectively. Phase is the imaginary

part of the logarithm of Eq. (8):

Φhx (t, ω) = Im
(

log Shx (t, ω)
)

. (9)

Figure 3. Illustration of PVGD method: (a) spectro-

gram, (b) masked GDF, (c) smoothed ODF with peak-

valley marks and annotation, and (d) final ODF.

GDF, the negative derivative of phase (9) with respect to

frequency, can be represented as:

GDF (t, ω) = Re

(

−
ST hx (t, ω)

Shx (t, ω)

)

, (10)

where ω = 2πf is the angular frequency and T (·) is the

operator such that T h (t) = t · h (t). Please refer to [6, 7]

for details of computing GDF. In this work, the group-

delay function is computed by the Time-Frequency Tool-

box (http://tftb.nongnu.org/). For brevity, we

denote the discrete implementation of Shx(t, ω) as X(n, k)
and GDF(t, ω) as GD(n, k) hereafter.

4.2 Proposed method

Onset events can be detected by zero-crossing or negative

maximal difference (∆GD) of GDFs [9, 10]. However, in

noisy data, extracting informative zero-crossings is not an

easy task, leading to false positives for ∆GD. From the

discussion in Section 4.1, we found that a prominent peak

(positive GDF) is usually followed by a prominent valley

(negative GDF) — a property that has been mostly ne-

glected in previous work. Our hypothesis is that consid-

ering both the peaks and valleys of GDF help differentiate

the onset events from the noisy terms.

As exemplified in Fig. 3, the calculation of PVGD in-

volves the following four consecutive steps:

1. Preprocessing: compute the raw spectrogram (Fig.

3 (a)) and GDF and then multiply the GDF by a

binary mask (Fig. 3 (b)). The mask is computed

from the spectrogram by setting the value of a time-

frequency bin X(n, k) with increasing energy (w.r.t.
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Table 1. F-scores and the corresponding thresholds of various onset detection methods; the symbol ‘*’ denotes the proposed

methods

Method
SF-based GDF-based

WPD CD
p = 2/3* p = 1/2* p = 1/3* SF (p = 1) log-SF PVGD* ∆ GD

MAPS30
F-score 0.947 0.958 0.962 0.923 0.888 0.963 0.956 0.563 0.783

δ 0.05 0.05 0.05 0.05 0.05 0.15 0.15 0.05 0.05

[9]
F-score 0.754 0.751 0.738 0.712 0.731 0.742 0.684 0.352 0.542

δ 0.30 0.30 0.30 0.30 0.30 0.45 0.40 0.30 0.10

X(n−1, k)) to 1 and a decreasing bin to 0. The bins

with insignificant energy in the spectrogram (i.e., en-

ergy smaller than a thousandth of the maximum of

the whole music piece) are also set to 0.

2. Pooling: sum up the masked GDF along the fre-

quency axis and obtain a rough ODF (Fig. 3 (c)),

which is subsequently smoothed to eliminate minor

fluctuation terms (please see Section 5.2 for the smooth

function).

3. Peak-valley picking: mark every peak-valley pair

on the ODF and record the positions and values. Be-

cause an onset event includes a group-delay peak

before onset perception and a valley after the on-

set, in principle every peak is followed by a valley.

Fig. 3 (c) uses triangular marks to denote the peaks

and rectangular marks for the valleys; we can see

the peak at frame #108 and the valley at frame #151

forms a strong peak-valley pair, so do frames #252

and #275, and frames #298 and #313. Human anno-

tations are depicted as dashed lines in Fig. 3 (c). We

can observe that the ODF at frames #262 and #309

predict the onset positions accurately, whereas the

ODF at frame #127 lags the onset position.

4. Decision: finally, we consider every middle point

of a peak-valley pair as an onset and the magnitude

difference between the peak and valley as the onset

strength (Fig. 3 (d)).

5. EVALUATION

5.1 Dataset

We evaluated our methods on two datasets. The first dataset

is a subset of the MIDI Aligned Piano Sounds (MAPS)

database [13, 17]. We refer to the dataset as MAPS30, as

it contains 30 piano pieces recorded by using an upright

Yamaha Disklavier piano. The annotation data of MAPS

includes the onset of every note even if they are played al-

most at the same time. To simplify the annotation data for

an onset detection experiment, multiple onset events were

regarded as a single event if they occur within 10 ms. This

resulted in more than 10,000 onsets in total. Onset detec-

tion for this dataset is considered simpler as it has only one

instrument.

The second dataset was compiled by Holzapfel et al. [9].

It is a more challenging dataset for onset detection as it

encompasses 1,829 onset events for 12 different instru-

ments classes including cello, clarinet, guitar, mixture, pi-

ano, saxophone, trumpet, violin, kemençe, ney, ud, and

tanbur, with the last four being Turkish instruments.

5.2 Post-processing

One critical processing stage in onset detection task is the

smoothing and peak picking procedures to exclude unwanted

fluctuations [2, 3, 4, 5]. In this work, the following proce-

dure was employed for all the detection methods except

for PVGD. First, the raw ODF was smoothed by a Han-

ning window of length 10 (i.e., 29 ms; note this is different

from the analysis window for computing STFT). Second,

the ODF of a music piece was subtracted by its mean and

divided by its standard deviation (z-scoring) for normal-

ization. Third, an adaptive threshold was established by

applying a median filter with length 100 (i.e., 290 ms) to

the ODF function. Fourth, the ODF function was further

subtracted by the adaptive threshold and then linearly nor-

malized to the range [0, 1]. Onset events were detected

using simple peak searching on the resulting curve.

PVGD does not require the aforementioned procedures,

except for the first smoothing step, because it takes the

middle point of a peak-valley pair as an onset directly. That

is to say, PVGD is free from the extra parameters needed

for adaptive thresholding.

5.3 Experiment setup

To reduce the computational cost, all audio files were down-

sampled to 11,025 Hz first. Hanning window was adopted

as the analysis window in computing STFT and GDF. The

window length and the hop size were set to 1,024 sam-

ples and 32 samples (i.e., 2.9 ms), respectively. Note the

hop size determines the finest resolution of onset detection.

Valid peaks of the ODF were determined by thresholding.

Onsets were counted as correct detections when they are

within a tolerance window of ±50 ms around the onset an-

notation [9]. If two or more decisions were made within

a tolerance window, only one decision was counted as a

true positive, rendering others false positive. The accuracy

for onset detection was evaluated in terms of F-score, the

harmonic mean of precision and recall, following previous

work [9, 10]. To investigate the effectiveness of the de-

tection methods, we searched for the optimal F-score by

exhausting the threshold δ from 0.05 to 0.95 with step size

0.05. The optimal F-scores were reported along with the

corresponding thresholds.
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Table 2. Performance of PVGD on the second dataset [9]

using Hanning window with different lengths

window size 256 512 1024 2048 4096

F-score 0.658 0.706 0.742 0.750 0.733

δ 0.50 0.50 0.45 0.30 0.15

Figure 4. Precision-recall (P-R) curves of PVGD using

Hanning window of various lengths for computing GDF.

5.4 Results

5.4.1 Overview

Table 1 lists the F-scores of all the methods discussed in

Section 2. It can be found that, for the SF-based methods,

setting p < 1 outperforms the conventional setting p = 1
for both datasets, with improvements ranging from about

2.5% to 4%. The optimal decision thresholds are not sen-

sitive to the value of p; setting p = 0.5 seems to perform

well. Moreover, using power-scale is found generally bet-

ter than using logarithmic scale in both datasets. For GDF-

based methods, PVGD performs comparably to ∆GD for

MAPS30 but leads to significant improvement for the sec-

ond dataset [9], improving the F-score from 0.684 to 0.742.

The performance of PVGD for MAPS30 is not pronounced

possibly because piano sounds inherently have sufficiently

sharp attack envelope. We also note that WPD and CD

are both inferior to the GD- and SF-based methods. The

best two F-scores for the two datasets are indicated by bold

fontface in Table 1. The proposed methods greatly outper-

form existing methods for the challenging dataset [9], and

are also better than the results using only SF (0.741) and

only GDF (0.737) reported in [9], respectively.

5.4.2 Effects of window sizes on GDF

After validating the effectiveness of the proposed methods,

we move on to report the effect of the analysis window

function. As discussed in Section 4, the performance of

GDF is expected to be correlated with the length of the

analysis window function, which influences the shape and

length of the measured attack-decay slope. This is vali-

dated in Table 2, where we see great dependence of the

F-scores and threshold values on the window size. Setting

the window size to 2,048 slightly improves the F-score of

PVGD to 0.750 for the second dataset. Window sizes of

256 (23.2 ms) or 512 (46.4 ms) are too short because the

attack time duration may last up to over 300 ms for string

and wind instruments [18]. On the other hand, although

a long window with size 4,096 (0.37s) is enough to ana-

lyze soft attacks, such a window falls short of analyzing

fast music, because it is easy to cover multiple onsets in a

single frame.

Fig. 4 shows the P-R curves as we vary the threshold

value from small values (higher recall) to large values (higher

precision). We can see that long windows lead to rela-

tively lower recall when the threshold value is small (left-

hand-side), possibly implying that more groups of neigh-

boring onset events are obscured into one (or even no)

event in this case. In contrast, short windows lead to rela-

tively lower precision (right-hand-side), possibly suggest-

ing more prominent peaks are inaccurately located in this

case. Better trade-off in precision and recall is obtained by

using a moderate analysis window and a moderate thresh-

old value.

6. DISCUSSION

Research has shown that fusing the decisions from differ-

ent onset detection improves the overall performance re-

markably [9]. Also, the uses of multi-resolution spectra,

vibrato suppression or neural network are able to improve

the robustness of the SF-based ODF [19]. In contrast to the

best-performing methods which typically combined vari-

ous approaches, the objective of this paper is to propose al-

ternative methods by considering the nature of musical sig-

nals, such the dynamic range and the ADSR curve. There-

fore, we opt for keeping the methodology simple to tackle

the problem from a fundamental signal processing perspec-

tive.

7. CONCLUSIONS

In this paper, we have presented two novel methods that

improve the robustness of onset detection against diverse

musical dynamics and undesirable fluctuation in phase. Eval-

uation on two onset detection datasets with different num-

ber of instruments shows that the proposed methods are

competitive alternative to existing ones. The proposed meth-

ods are conceptually simple and easy to be implemented.

We conjecture that even better performance can be obtained

by multi-band processing or decision fusion, as demon-

strated in [10] and [9]. This is left as a subject of future

study.
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